34.范畴论结束

 这个系列差不多有三个月了吧,总算是把这书初步看了一遍。不禁唏嘘,这书是去年年初开始看的,也是因缘际会所得,最初是一个公众号推荐的,说这个多么多么神奇,集合论马上就要被取代了,这个范畴论将带来数学体系新的变革。当初还比较单纯,信了这一番话,马上就去找书看,想着学会了这个就能去吹嘘了,别人肯定会对我刮目相看。

结果,进入了这个大坑,真是太大了,最初真是如看天书,尤其是范畴论到处都是符号,到处都是数学,他是高阶理论,不是基础理论,所以很难找出初等的例子,所谓的例子都是在抽象的数学结构上展开的。真是越看越无力,虽然只有这两百多页,但就是看不懂。就像另一本书,代数第零课,我也尝试过去学习,在范畴论的高度下,结果又被坑了,那是一本研究生教材,默认了对抽象代数有很好的基础。虽然勉强看了前几章,但是差距太大,被迫放弃。

其实,人看书的时候很容易就清楚合适不合适了,因为如果相关经验不够,就会感觉书中的各种话题非常陌生,作者看来是放松的内容,自己看来就是折磨。

总之,一路走来,属实不易。当然,在目前的观点下,倒也不对,因为看似如此之长的学习时间,本质上还是许许多多的当下时刻的选择,我随时可以将这个目标抛弃,就像别的书一样,但可能真的是对我的胃口,所以,一次又一次选择继续下去,即使在比较艰难的时刻。

总算,这个旅程告一段落了。人可以选择任何事,因此没有必须要做的事,只要明晰并且接受选择的后果,明白自己不由任何外物所定义的本质,就可以获得自由。所以,当初或许是因为以学习和接受新的知识为自我本质,怀着目的而为,现在就没有这种必须性,我可以不知道,也可以不再去学习,甚至可以选择忘记,因为这些并不是本质。当然,对我这种已经拥有了很多的人而言,似乎像是玩笑话,但是,我很清楚,在此之前,即使拥有再多知识,也一直在不断渴求更多,完全意识不到自己所拥有的东西。这就是学习上的欲望,不会让人感觉更好,只会让人感觉更加焦虑。

所以,或许这也是能把这书结束的原因了,因为我对了解未知的欲望减小了,时间反而空了出来,有充足的时间和精力来集中于这一个目标上。少就是多,充分的体现了出来。

好了,又谈了一堆意识上的东西,看上去又玄又空。接下来就谈一些实用性的东西。



到底范畴论是干嘛用的,学了有什么好处?

我觉得,范畴论还是代数的,他的各种构造,图表其实就是等式理论的另一种表述,这也能从代数型范畴所具有的良好性质看出来,对于非代数型的范畴,比如最简单的偏序集范畴,也有对应的形式,不过性质就要差一些,因为等式总是对称性,而序并不是对称的,不过这种不对称性也有好处,就是关于极限的性质就会简单不少,表现为序的极大和极小关系,而对于代数上的序,比如理想链,比如子群链,正规子群链,这种极限的表述就不够形象了。往往就是极大理想,极大子群等东西,想要明确定义出来都不是件容易的事,可视化就不要想了。

然后是范畴的构造,其实是在抽象内容的基础上的算术,代数的本质就是算术,加法,乘法,单位元,多项式,不过是不断地改变其基本单元,从纯粹的数到数列,数组,矩阵,函数等等。万变不离其宗,范畴论可以说就直白的把这个本质给亮了出来,只要是代数,就是这套东西,他就是范畴论中的各种结构,积,余积,指数,内容直接封装为一个范畴,于是,不考虑其实际含义,这样的结构总是可以添上去的,在这个角度来看,学完了范畴论,所有代数的基本框架其实就都清楚了,什么同态,同构,核,商,子,积,运算,等式型公理。

所以,如果以后范畴论真的下放到本科学习阶段了,那涉及代数的课程篇幅就可以大大减小,直至与通用结构相区别的部分,省去了很多重复的东西,那些东西作为一个范畴论大作业就可以了,也就是具体给范畴论的基本结构填充上具体内容就行了。

接着,是范畴和逻辑的关系,这方面我最初其实是不太感冒的,因为逻辑听起来太高端了,似乎只能做纯研究而不能落地,但是,后来慢慢发现计算机理论,程序编译,还有各种自动机其实都是和逻辑紧密联系的,逻辑早已不是辩论和区分了,现在都是逻辑系统,逻辑模型,逻辑代数,是着眼于全局的,所以天然的和范畴论结合在了一起,因为范畴也是着眼全局的,在于通用性而不是某一个专门问题的解。

这方面,考虑程序编译,本质上就是一种递归函数,通过非常有限的运算来实现几乎所有的计算任务,这些运算通过范畴的结构可以轻松的表示出来,因为计算机是天然的离散系统,所以代数是非常有效的,而微积分往往需要离散为代数操作才能在计算机上实现,就比如微分和差分,积分和求和,所以,范畴论在计算机理论研究中也是经常用到的,比如Java中的λ-函数,比如函数式编程,都是重要的应用。

然后是比较抽象的部分,伴随函子,单子,单子代数,这些东西比较复杂,想要应用出来并不容易,基本上就是数学理论上的另一种理解,比如,之前有人称泛函分析中的就有伴随函子的用武之地,在向量空间和对偶向量空间之间的一些对应,但是,要得到广泛认可,还需要足够的时间。这也是有些人一直声称的用范畴论改造既有的数学,这当然是好事,但是也不能操之过急,因为现在学习范畴论的人并不多,研究范畴论本身的也并不多,大多是将其视为一个好用的工具,以求在专门的科研领域中取得突破,而不是将他作为教学的必要课程,即使勉强为之,老师恐怕都很难找,对于现在的书籍,绝对不适合大部分的学生学习。就像鸡肋一样,不学基础课看不懂,学了基础课,除非想要进行相关研究,不然就没必要再去看了。从课程的开设到成熟需要数十年,所以这个就不考虑了。

范畴论的好处,你可以毫无障碍的去看任何代数的基础部分,至于进阶部分往往是领域交叉的东西,那些肯定需要相应的的基础,反正代数方面是没有什么大的问题,甚至于他的基础对象完全看不懂,但是,你就是知道他可以进行各种基础的范畴论构造,积,极限,对偶。

很有意思,就跟面向对象编程一样,不管类是怎么定义的,有多么复杂,但是他的方法你是清楚的,于是就可以使用,进行一些简单的操作。

然后是范畴论的一些哲学含义。在同构的基础上唯一,这是非常精彩的描述,是对无形的描述,物有千态万象,如果使用具体的东西去表达,是无法完整的表示出来的。而通过这种UMP的万有性,就将数不尽的形态给统一了起来,可以说是略去了形式而把握了本质。

可以说,这些思想可以轻易的抓取到各种哲学思想的精华,比如真理,神,万物一体。这些看起来不可解释的东西,都可以通过性质来把握,每个人都可以有自己的一套的真理观念,甚至所有的物都可以有自己的一套真理观念,所有的这些都是对的,是真理概念在不同的范畴中的具体表示。对于神,同样可以借此理解,每个人都以自己的认识水平给出神的形象,那么神到底是哪一个呢?全部都是,不过是在不同的认知范畴中有着不同的表示。这种表述在数学上自然是非常不准确的,但是,作为一种辅助理解的手段,确实是可以让人实在的把握住这种不可描述的对象,这不是非常神奇的吗?

在这个意义上,范畴论可以称得上是人类描述和理解能力的一次飞跃了,而且是系统性的。

写的有点多了,就到此为止吧。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容

  • 所谓的结构,其实是一种生成手段,从既有范畴出发,获得一些新的范畴。这样的思想是从张德学老师的拓扑学讲义中而来的,那...
    Obj_Arr阅读 509评论 0 2
  • 继续, 上一文,出现了一些偏差,不过也说明了一个问题,中小学的教育方式是不太适合抽象代数的讲解的。 尽管会计算,但...
    Obj_Arr阅读 287评论 0 1
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,041评论 0 4
  • 公元:2019年11月28日19时42分农历:二零一九年 十一月 初三日 戌时干支:己亥乙亥己巳甲戌当月节气:立冬...
    石放阅读 6,877评论 0 2