Ascend+FastAPI+ Uvicorn 实现推理

1、FastAPI & Uvicorn

FastAPI

FastAPI 是一个用于构建 API 的现代、快速(高性能)的 Python Web 框架,专为在 Python 中构建 RESTful API 而设计,具有以下特点:
高性能

  • 性能卓越:FastAPI 的性能可与 NodeJS 和 Go 等语言的高性能 Web 框架相媲美,是最快的 Python Web 框架之一。这得益于其底层的 Starlette 框架和异步编程模型,能够充分利用 Python 异步生态系统,提供卓越的性能和吞吐量。
  • 异步支持:FastAPI 支持基于 Python 3.7 及以上版本的异步编程,使得处理 IO 密集型任务更加高效,非常适合高并发的场景。
from fastapi import FastAPI
app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int, q: str = None):
    return {"item_id": item_id, "q": q}

在这个例子中,我们定义了两个路由:一个根路由 / 和一个带参数的路由 /items/{item_id}。通过装饰器 @app.get(),我们指定了 HTTP 方法和路由路径。函数参数将自动从查询参数、路径参数、请求头等中提取,并进行数据验证。

Uvicorn

Uvicorn 是一个基于 ASGI(Asynchronous Server Gateway Interface)的轻量级异步服务器,用于运行 Python Web 应用程序,特别是那些基于 ASGI 的现代异步框架,如 FastAPI、Starlette 等。以下是关于 Uvicorn 的详细介绍:
基本功能

  • 异步支持:Uvicorn 是一个异步服务器,能够充分利用 Python 的异步编程特性。它使用 Python 的 asyncio 库来处理并发请求,使得应用程序能够更高效地处理大量并发连接,特别适合处理 IO 密集型任务,如网络请求、数据库操作等。
  • 高性能:Uvicorn 的性能非常出色,它能够快速地处理请求和响应,提供高吞吐量和低延迟的服务。在许多基准测试中,Uvicorn 的性能表现与一些传统的同步服务器(如 Gunicorn)相比具有显著优势,尤其是在处理大量并发请求时。

FastAPI + Uvicorn 的结合

  • 无缝集成:Uvicorn 与 FastAPI 结合使用非常方便。FastAPI 生成的 ASGI 应用可以直接由 Uvicorn 运行,无需额外的适配。这种组合充分利用了 FastAPI 的开发友好性和 Uvicorn 的高性能,使得开发和部署异步 Web 应用变得非常简单。
  • 生产环境:在生产环境中,Uvicorn 可以与 Nginx 等反向代理服务器配合使用,提供更稳定、更安全的服务。Nginx 可以处理静态文件、负载均衡、SSL/TLS 加密等任务,而 Uvicorn 专注于处理动态请求。

假设有一个简单的 FastAPI 应用 app.py:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def read_root():
    return {"Hello": "World"}

可以通过以下命令使用 Uvicorn 启动该应用:
bash复制uvicorn app:app --host 0.0.0.0 --port 8000
访问 http://localhost:8000 即可看到返回的 JSON 响应。

2、Ascend上跑推理

方案设计
具体的模型通过transformers 库的from_pretrained接口从xxx-config配置文章引入。

model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0"),

引入。然后就是,以FastAPI + Uvicorn启动一个web服务,通过generate_chat_output运行推理,获取推理结果。
整体方案代码参考如下:

import torch
import torch_npu
import uvicorn
from typing import List
from fastapi import FastAPI
from contextlib import asynccontextmanager
from transformers import AutoTokenizer, AutoModel
from fastapi.middleware.cors import CORSMiddleware

# 设置卡
torch.npu.set_device("npu:0")

# 配置tokenizer 
tokenizer = AutoTokenizer.from_pretrained("xxx-config")

# 获取模型
model = AutoModel.from_pretrained("xxx-config", torch_dtype="auto").to("npu:0")

@asynccontextmanager
async def lifespan(app: FastAPI):
    yield
    if torch_npu.npu.is_available():
        torch_npu.npu.empty_cache()

# 实例化api服务器
app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
)

# 推理实现
@app.post("/llm/chat")
async def generate_chat_output(item: Item):
    try:
        texts = [t.replace("\n", " ") for t in item.sentences]
        encoded_inputs = tokenizer(texts, truncation=True, return_tensors="pt", padding=True, max_length=512).to("npu:0")
        with torch.no_grad():
            model_output = model(**encoded_inputs)
    except Exception as e:
        traceback.print_exc()

    return sequence_embeddings.tolist()

# uvicorn提供服务化
if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=8080)

构建测试
测试文件test.py如下:

import httpx
data = {
    "sentences": ["中国GDP为129.43万亿元,GDP增速为5.25%,人均GDP为8.94万元/人,人均GDP增速为5.40%,其中第一产业占6.90%,第二产业占36.80%,第三产业占56.30%"]
}
def request_url():
    with httpx.Client() as client:
        res = client.post("http://127.0.0.1:1025/llm/chat", json=data)
        print(res.json())

运行

python test.py

客户端和服务器均正常。


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容