class HMM(object):
def __init__(self):
import os
# 主要是用于存取算法中间结果,不用每次都训练模型
self.model_file = 'chapter-3/data/hmm_model.pkl'
# 状态值集合
self.state_list = ['B', 'M', 'E', 'S']
# 参数加载,用于判断是否需要重新加载model_file
self.load_para = False
# 用于加载已计算的中间结果,当需要重新训练时,需初始化清空结果
def try_load_model(self, trained):
if trained:
import pickle
with open(self.model_file, 'rb') as f:
self.A_dic = pickle.load(f)
self.B_dic = pickle.load(f)
self.Pi_dic = pickle.load(f)
self.load_para = True
else:
# 状态转移概率(状态->状态的条件概率)
self.A_dic = {}
# 发射概率(状态->词语的条件概率)
self.B_dic = {}
# 状态的初始概率
self.Pi_dic = {}
self.load_para = False
# 计算转移概率、发射概率以及初始概率
def train(self, path):
# 重置几个概率矩阵
self.try_load_model(False)
# 统计状态出现次数,求p(o)
Count_dic = {}
# 初始化参数
def init_parameters():
for state in self.state_list:
self.A_dic[state] = {s: 0.0 for s in self.state_list}
self.Pi_dic[state] = 0.0
self.B_dic[state] = {}
Count_dic[state] = 0
def makeLabel(text):
out_text = []
if len(text) == 1:
out_text.append('S')
else:
out_text += ['B'] + ['M'] * (len(text) - 2) + ['E']
return out_text
init_parameters()
line_num = -1
# 观察者集合,主要是字以及标点等
words = set()
with open(path, encoding='utf8') as f:
for line in f:
line_num += 1
line = line.strip()
if not line:
continue
word_list = [i for i in line if i != ' ']
words |= set(word_list) # 更新字的集合
linelist = line.split()
line_state = []
for w in linelist:
line_state.extend(makeLabel(w))
assert len(word_list) == len(line_state)
for k, v in enumerate(line_state):
Count_dic[v] += 1
if k == 0:
self.Pi_dic[v] += 1 # 每个句子的第一个字的状态,用于计算初始状态概率
else:
self.A_dic[line_state[k - 1]][v] += 1 # 计算转移概率
self.B_dic[line_state[k]][word_list[k]] = \
self.B_dic[line_state[k]].get(word_list[k], 0) + 1.0 # 计算发射概率
self.Pi_dic = {k: v * 1.0 / line_num for k, v in self.Pi_dic.items()}
self.A_dic = {k: {k1: v1 / Count_dic[k] for k1, v1 in v.items()}
for k, v in self.A_dic.items()}
# 加1平滑
self.B_dic = {k: {k1: (v1 + 1) / Count_dic[k] for k1, v1 in v.items()}
for k, v in self.B_dic.items()}
# 序列化
import pickle
with open(self.model_file, 'wb') as f:
pickle.dump(self.A_dic, f)
pickle.dump(self.B_dic, f)
pickle.dump(self.Pi_dic, f)
return self
def viterbi(self, text, states, start_p, trans_p, emit_p):
V = [{}]
path = {}
for y in states:
V[0][y] = start_p[y] * emit_p[y].get(text[0], 0)
path[y] = [y]
for t in range(1, len(text)):
V.append({})
newpath = {}
# 检验训练的发射概率矩阵中是否有该字
neverSeen = text[t] not in emit_p['S'].keys() and \
text[t] not in emit_p['M'].keys() and \
text[t] not in emit_p['E'].keys() and \
text[t] not in emit_p['B'].keys()
for y in states:
emitP = emit_p[y].get(text[t], 0) if not neverSeen else 1.0 # 设置未知字单独成词
(prob, state) = max(
[(V[t - 1][y0] * trans_p[y0].get(y, 0) *
emitP, y0)
for y0 in states if V[t - 1][y0] > 0])
V[t][y] = prob
newpath[y] = path[state] + [y]
path = newpath
if emit_p['M'].get(text[-1], 0) > emit_p['S'].get(text[-1], 0):
(prob, state) = max([(V[len(text) - 1][y], y) for y in ('E', 'M')])
else:
(prob, state) = max([(V[len(text) - 1][y], y) for y in states])
return (prob, path[state])
def cut(self, text):
import os
if not self.load_para:
self.try_load_model(os.path.exists(self.model_file))
prob, pos_list = self.viterbi(text, self.state_list, self.Pi_dic, self.A_dic, self.B_dic)
begin, next = 0, 0
for i, char in enumerate(text):
pos = pos_list[i]
if pos == 'B':
begin = i
elif pos == 'E':
yield text[begin: i + 1]
next = i + 1
elif pos == 'S':
yield char
next = i + 1
if next < len(text):
yield text[next:]
hmm = HMM()
hmm.train('chapter-3/data/trainCorpus.txt_utf8')
text = '这是一个非常棒的方案!'
res = hmm.cut(text)
print(text)
print(str(list(res)))
3.1 HMM 算法源码
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...