【智能优化算法】基于麻雀搜索算法求解单目标最优问题附Matlab代码

1 简介

2 部分代码

%_________________________________________________________________________________

% Salp Swarm Algorithm (SSA) source codes version 1.0

%

% You can simply define your cost in a seperate file and load its handle to fobj 

% The initial parameters that you need are:

%__________________________________________

% fobj = @YourCostFunction

% dim = number of your variables

% Max_iteration = maximum number of generations

% SearchAgents_no = number of search agents

% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n

% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n

% If all the variables have equal lower bound you can just

% define lb and ub as two single number numbers

% To run SSA: [Best_score,Best_pos,SSA_cg_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

%__________________________________________

clear all 

clc

SearchAgents_no=30; % Number of search agents

Function_name='F5'; % Name of the test function that can be from F1 to F23 ( 

Max_iteration=100; % Maximum numbef of iterations

% Load details of the selected benchmark function

[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,SSA_cg_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[500 500 660 290])

% %Draw search space

subplot(1,2,1);

func_plot(Function_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel(['( x_1 , x_2 )'])

%Draw objective space

subplot(1,2,2);

semilogy(SSA_cg_curve,'Color','r')

title('Objective space')

xlabel('Iteration');

ylabel('Best score obtained so far');

axis tight

grid on

box on

legend('SSA')

display(['The best solution obtained by SSA is \m ', num2str(Best_pos)]);

display(['The best optimal value of the objective funciton found by SSA is \n ', num2str(Best_score)]);

img =gcf; %获取当前画图的句柄

print(img, '-dpng', '-r600', './img.png')         %即可得到对应格式和期望dpi的图像


3 仿真结果

4 参考文献

[1]田慕玲, 杨宇博, 许春雨,等. 一种基于混沌麻雀搜索算法的煤岩分界图像增强方法:. 

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

完整代码获取关注微信公众号天天matlab

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容