8、特征离散化

8、特征离散化

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_moons, make_circles, make_classification

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import KBinsDiscretizer

from sklearn.svm import SVC, LinearSVC

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.utils._testing import ignore_warnings

from sklearn.exceptions import ConvergenceWarning

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

h = .02  # 设置网格的补不长

def get_name(estimator):

    name = estimator.__class__.__name__

    if name == 'Pipeline':

        name = [get_name(est[1]) for est in estimator.steps]

        name = ' + '.join(name)

    return name

# (estimator,param_grid)的列表,其中在GridSearchCV中使用param_grid

classifiers = [

    (LogisticRegression(random_state=0), {

        'C': np.logspace(-2, 7, 10)

    }),

    (LinearSVC(random_state=0), {

        'C': np.logspace(-2, 7, 10)

    }),

    (make_pipeline(

        KBinsDiscretizer(encode='onehot'),

        LogisticRegression(random_state=0)), {

            'kbinsdiscretizer__n_bins': np.arange(2, 10),

            'logisticregression__C': np.logspace(-2, 7, 10),

        }),

    (make_pipeline(

        KBinsDiscretizer(encode='onehot'), LinearSVC(random_state=0)), {

            'kbinsdiscretizer__n_bins': np.arange(2, 10),

            'linearsvc__C': np.logspace(-2, 7, 10),

        }),

    (GradientBoostingClassifier(n_estimators=50, random_state=0), {

        'learning_rate': np.logspace(-4, 0, 10)

    }),

    (SVC(random_state=0), {

        'C': np.logspace(-2, 7, 10)

    }),

]

names = [get_name(e) for e, g in classifiers]

n_samples = 100

datasets = [

    make_moons(n_samples=n_samples, noise=0.2, random_state=0),

    make_circles(n_samples=n_samples, noise=0.2, factor=0.5, random_state=1),

    make_classification(n_samples=n_samples, n_features=2, n_redundant=0,

                        n_informative=2, random_state=2,

                        n_clusters_per_class=1)

]

fig, axes = plt.subplots(nrows=len(datasets), ncols=len(classifiers) + 1,

                        figsize=(21, 9))

cm = plt.cm.PiYG

cm_bright = ListedColormap(['#b30065', '#178000'])

# 在数据集上迭代

for ds_cnt, (X, y) in enumerate(datasets):

    print('\ndataset %d\n---------' % ds_cnt)

    # 预处理数据集,分为训练和测试部分

    X = StandardScaler().fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=.5, random_state=42)

    # 为背景颜色创建网格

    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

    xx, yy = np.meshgrid(

        np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

    # 首先绘制数据集

    ax = axes[ds_cnt, 0]

    if ds_cnt == 0:

        ax.set_title("Input data")

    # 规划训练要点

    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

              edgecolors='k')

    # 检测点

    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,

              edgecolors='k')

    ax.set_xlim(xx.min(), xx.max())

    ax.set_ylim(yy.min(), yy.max())

    ax.set_xticks(())

    ax.set_yticks(())

    # 在分类器上迭代

    for est_idx, (name, (estimator, param_grid)) in \

            enumerate(zip(names, classifiers)):

        ax = axes[ds_cnt, est_idx + 1]

        clf = GridSearchCV(estimator=estimator, param_grid=param_grid)

        with ignore_warnings(category=ConvergenceWarning):

            clf.fit(X_train, y_train)

        score = clf.score(X_test, y_test)

        print('%s: %.2f' % (name, score))

        # 绘制决策边界。

        # 将网格[x_min,x_max] * [y_min,y_max]中的每个点分配颜色。

        if hasattr(clf, "decision_function"):

            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

        else:

            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

        # 将结果放入颜色图

        Z = Z.reshape(xx.shape)

        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

        # 绘制训练点

        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

                  edgecolors='k')

        # 以及测试点

        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

                  edgecolors='k', alpha=0.6)

        ax.set_xlim(xx.min(), xx.max())

        ax.set_ylim(yy.min(), yy.max())

        ax.set_xticks(())

        ax.set_yticks(())

        if ds_cnt == 0:

            ax.set_title(name.replace(' + ', '\n'))

        ax.text(0.95, 0.06, ('%.2f' % score).lstrip('0'), size=15,

                bbox=dict(boxstyle='round', alpha=0.8, facecolor='white'),

                transform=ax.transAxes, horizontalalignment='right')

plt.tight_layout()

# 在图像上增加标题

plt.subplots_adjust(top=0.90)

suptitles = [

    '线性分类器',

    '特征离散化与线性分类器',

    '非线性分类器',

]

for i, suptitle in zip([1, 3, 5], suptitles):

    ax = axes[0, i]

    ax.text(1.05, 1.25, suptitle, transform=ax.transAxes,

            horizontalalignment='center', size='x-large')

plt.show()


©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容