求众数
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2
哈希Map
func majorityElement(nums []int) int {
var (
numMap = make(map[int] int)
numsLen = len(nums)
)
for _, num := range nums {
v, ok := numMap[num]
if !ok {
numMap[num] = 1
} else {
numMap[num] = v + 1
}
}
for k, v := range numMap {
if v > numsLen / 2 {
return k
}
}
return 0
}
复杂度分析
投票算法
本质上, Boyer-Moore 算法就是找 nums 的一个后缀 sufsuf ,其中 suf[0]suf[0] 就是后缀中的众数。我们维护一个计数器,如果遇到一个我们目前的候选众数,就将计数器加一,否则减一。只要计数器等于 0 ,我们就将 nums 中之前访问的数字全部 忘记 ,并把下一个数字当做候选的众数。直观上这个算法不是特别明显为何是对的,我们先看下面这个例子(竖线用来划分每次计数器归零的情况)
[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]
首先,下标为 0 的 7 被当做众数的第一个候选。在下标为 5 处,计数器会变回0 。所以下标为 6 的 5 是下一个众数的候选者。由于这个例子中 7 是真正的众数,所以通过忽略掉前面的数字,我们忽略掉了同样多数目的众数和非众数。因此, 7 仍然是剩下数字中的众数。
[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 5, 5, 5, 5]
现在,众数是 5 (在计数器归零的时候我们把候选从 7 变成了 5)。此时,我们的候选者并不是真正的众数,但是我们在 遗忘 前面的数字的时候,要去掉相同数目的众数和非众数(如果遗忘更多的非众数,会导致计数器变成负数)。
因此,上面的过程说明了我们可以放心地遗忘前面的数字,并继续求解剩下数字中的众数。最后,总有一个后缀满足计数器是大于 0 的,此时这个后缀的众数就是整个数组的众数。
复杂度分析
时间复杂度:O(n)O(n)
Boyer-Moore 算法严格执行了 nn 次循环,所以时间复杂度是线性时间的。
空间复杂度:O(1)O(1)
Boyer-Moore 只需要常数级别的额外空间。
func majorityElement(nums []int) int {
var (
selectNum int
count int
)
for _, num := range nums {
if count == 0 {
selectNum = num
}
if selectNum == num {
count += 1
} else {
count -= 1
}
}
return selectNum
}