用python 实现 hive sql join和row_number

给定一个查询时间,找最近登录的用户

create temporary function row_number as "com.ai.hive.udf.util.RowNumberUDF";

select logint_time,username from 

( select ip,login_time,username from (

select ip ,select_time from a join select ip,login_time,username from b on(a.ip=b.ip and a.login_time

)t sort by login_time desc )p where row_number=1


import pandas as pd

import numpy as np

login_column_names = ['ip','dip','type','uri','time']

select_column_names = ['ip','dip','action','time']

df_login = pd.read_csv('login.txt',sep='\t',encoding='utf-8',header=None,names=login_column_names)

df_select = pd.read_csv('select.txt',sep='\t',encoding='utf-8',header=None,names=select_column_names)

df_login[['username','password','authPassword','submit']]= df_login['uri'].str.replace('j_username=','').str.replace('password=','').str.split('&',expand=True)

df_login

x=[1,2,3,6,7,8]

df_login.drop(df_login.columns[x], axis=1, inplace=True)

df_login

import time

# time.strptime(df_login['time'],"%Y-%m-%d %H:%M:%S")

df_login['time']

df_login['new_time']=0

a = 0

for x in df_login['time']:

    print(int(time.mktime(time.strptime(x,"%Y-%m-%d %H:%M:%S.%f"))))

    df_login['new_time'][a] =  int(time.mktime(time.strptime(x,"%Y-%m-%d %H:%M:%S.%f")))

    a=a+1

df_login['new_time']

import time

# time.strptime(df_login['time'],"%Y-%m-%d %H:%M:%S")

df_select['time']

df_select['new_time']=0

a = 0

for x in df_select['time']:

    print(int(time.mktime(time.strptime(x,"%Y-%m-%d %H:%M:%S.%f"))))

    df_select['new_time'][a] =  int(time.mktime(time.strptime(x,"%Y-%m-%d %H:%M:%S.%f")))

    a=a+1

df_select

df_on = df_select.merge(df_login,how='left',on=['ip'])

df_on

df_on['diff_time'] = df_on['new_time_x']-df_on['new_time_y']

df_on

df_on[df_on['diff_time']>=0]

#找时间最小的那个

df_on = df_on[df_on['diff_time']>=0]

df_on

df_on[['ip','time_x','username','diff_time']]

def min_time(df,n=3,column='diff_time'):

    return df.sort_index(by=column,ascending=False)[-n:]

df_on[['ip','time_x','username','diff_time']].groupby(['ip','time_x']).apply(min_time,n=1)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,914评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,935评论 2 383
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,531评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,309评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,381评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,730评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,882评论 3 404
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,643评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,095评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,448评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,566评论 1 339
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,253评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,829评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,715评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,945评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,248评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,440评论 2 348

推荐阅读更多精彩内容

  • 50个常用的sql语句Student(S#,Sname,Sage,Ssex) 学生表Course(C#,Cname...
    哈哈海阅读 1,225评论 0 7
  • 【MySQL】Linux下MySQL 5.5、5.6和5.7的RPM、二进制和源码安装 1.1BLOG文档结构图 ...
    小麦苗DB宝阅读 10,519评论 0 31
  • 小学六年,贪玩的米莉竟然被我校的足球队长表白了! 说实话…那天夕阳西下,那一缕残留的阳光照在米莉乌黑发亮的头发上,...
    完美爱米莉阅读 334评论 1 3
  • 最近都是关于江歌案的报道,大大小小铺天盖地。首先我要表示歉意,如果不是最近的信息爆炸,我还真不知道这桩震惊的血案。...
    天真摸鱼郎阅读 178评论 0 1
  • 我对你有太多复杂的情绪 我没有足够的词语来描写春天与你 或像柔风又像寒雨 甚至是无知无觉的那条鱼 每见你一次我都觉...
    uhke阅读 143评论 1 1