文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测;


文献简介

标题(英文):DNAscope: High accuracy small variant calling using machine learning

标题(中文):DNAscope:使用机器学习的高精度小变异调用

发表期刊:bioRxiv

作者单位:Sentieon公司

发表年份:2022

文章地址:https://doi.org/10.1101/2022.05.20.492556

图1 文献简介

        当前的小变异检测技术,尤其是GATK的HaplotypeCaller,在大多数情况下表现优秀。然而,在复杂基因组区域的检测准确性仍有提升空间。随着测序技术在临床应用中的普及,提高这些区域的检测准确性变得越来越重要。传统方法主要依赖专家构建的模型和手动调整的过滤器,而机器学习方法显示出通过学习更复杂的变异特征关系来提高检测准确性的潜力。


测序流程

        DNAscope作为GATK HaplotypeCaller的进阶版本,巧妙地融合了成熟的基于单倍型的变异检测方法和先进的机器学习技术,以提升变异检测的准确性。它在保留原有逻辑架构的同时,优化了活跃区域检测和局部组装过程,特别增强了在复杂基因组区域的表现。DNAscope通过为候选变异添加额外信息注释,并结合机器学习模型进行变异基因型分析,显著提高了整体准确度。此外,DNAscope还可与贝叶斯基因型分析模型配合使用,使其在非哺乳动物物种的重测序分析中同样发挥优势,体现了其广泛的适用性和卓越的性能。

图2 DNAscope方法概述

        为了评估 DNAscope 在不同个体中的变异调用准确性,研究者使用 Sentieon 的 DNAscope 和 DNAseq(符合 GATK 种系最佳实践)管道,使用来自三个 GIAB 样本的公开数据来调用变异:HG002、HG003 和 HG004。

        测试涵盖了不同测序深度(15x至36x),并以NIST GIAB高置信度调用v4.2.1为基准。结果显示,DNAscope在所有样本和测序深度下的SNP和INDEL检测性能均优于DNAseq,特别是在30x HG002样本中,SNP和INDEL的F1分数分别达到99.57%和99.46%,总体错误率降低了一半以上。这种在多个样本中的卓越表现证明了DNAscope模型的泛化能力,而非过拟合于训练样本。此外,DNAscope还展现了适应新测序技术的潜力,如之前研究中开发的MGI模型所示,进一步凸显了其在变异检测领域的先进性和灵活性。

图3 DNAscope 和 DNAseq 的精确召回曲线
图4 对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

        为深入评估变异检测工具的性能,研究组利用GA4GH的分层区域进行了详细分析。这些区域包括低可映射性、分段重复、自链区域、MHC以及综合多种复杂因素的"全难度"区域。结果显示,DNAscope在读数映射困难的区域,如低可映射性、分段重复和自链区域,均明显优于DNAseq。特别是在MHC区域的SNP检测和长同聚物区域的INDEL检测中,DNAscope表现更为出色。这些优势共同导致DNAscope在复杂基因组区域的整体表现优于DNAseq。值得注意的是,即使在相对简单的区域,DNAscope在INDEL检测方面仍保持领先,而在SNP检测方面与DNAseq旗鼓相当。这一全面的分层分析凸显了DNAscope在处理各种复杂基因组区域时的强大能力和灵活性。

        研究团队通过对HG002、HG003和HG004的36x测序数据进行抽样,创建了5个不同深度的数据集,以评估变异检测工具在不同测序覆盖度下的性能。结果显示,尽管变异检测准确性通常随覆盖度降低而下降,但DNAscope在低覆盖度条件下仍然保持了优于DNAseq的高准确性。特别值得注意的是,DNAscope在20x覆盖度下的表现始终优于DNAseq在36x覆盖度下的表现。这一发现突显了DNAscope改进的架构和机器学习模型过滤在低覆盖度条件下的显著优势,为高效且经济的变异检测提供了新的可能性。

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

        研究探讨了DNAscope贝叶斯模型在非人类和多倍体样本上的表现,特别关注15x覆盖度下的性能。结果显示,尽管整体准确性低于其机器学习模型,DNAscope的贝叶斯模型在INDEL检测方面仍优于DNAseq,而在SNP检测方面两者相当。这表明DNAscope在处理非标准样本时仍具有一定优势,尤其是在INDEL检测方面。

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

        在标准化的AWS环境中,研究组对DNAscope进行了性能测试。结果显示,使用96+vCPU处理30x全基因组测序样本时,DNAscope的运行时间不到1小时,与DNAseq相当,比BWA/GATK快5倍。测试还表明DNAscope具有良好的可扩展性,运行时间与线程数几乎呈线性关系。


图7 DNAscope 在多个 AWS C6i 实例上的运行时

Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。 截至2023年3月份,Sentieon已经在全球范围内为1300+用户提供服务,被世界一级影响因子刊物如NEJM、Cell、Nature等广泛引用,引用次数超过700篇。此外,Sentieon连续数年摘得了Precision FDA、Dream Challenges等多个权威评比的桂冠,在业内获得广泛认可。


总结

        在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容