python gpt

GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。文章来源站点https://www.yii666.com/

1 openai安装

    Python openai库可直接通过pip install openai安装。如果已经安装openai,但是后续提示找不到ChatCompletion,那么请使用命令“pip install -U openai”来升级openai。

2 api_requestor.py替换

    Python openai安装完成之后,会产生api_requestor.py文件,文件位于python环境库文件目录下“site-packages\openai\api_requestor.py”,如下所示。将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。
Windows:
C:\ProgramData\Anaconda3\Lib\site-packages\openai\api_requestor.py
或
C:\ProgramData\Anaconda3\envs\xxx\lib\site-packages\openai\api_requestor.py
Linux:
/root/miniconda3/lib/pythonxx/site-packages/openaiapi_requestor.py
或
/root/miniconda3/envs/xxx/lib/pythonxx/site-packages/openaiapi_requestor.py
将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。

3 接口调用说明

    接口调用方式不变,与openai自身调用方式一致。输入主要有7个参数。

    (1)model:模型名称,gpt-3.5-turbo或gpt-3.5-turbo-0301

    (2)messages:问题或待补全内容,下面重点介绍。

    (3)temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。

    (4)max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。ChatGPT API允许的最大token数量为4096,即max_tokens最大设置为4096减去问题的token数量。

    (5)top_p:设置为1即可。

    (6)frequency_penalty:设置为0即可。

    (7)presence_penalty:设置为0即可。

    (8)stream:控制连续输出或完整输出。

    需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。

    如果stream取值为False,那么完全返回全部文字结果,可通过response.choices[0].delta['content']进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字)。读取程序如下所示.

4 message

    messages字段组成部分包括角色role和content问题两个部分组成,如下所示:
  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]
    在gpt-3.5-turbo模型中,角色role包含system系统、assistant助手和用户user三种类型。System角色相当于告诉ChatGPT具体以何种角色回答问题,需要在content中指明具体的角色和问题内容。而gpt-3.5-turbo-0301主要区别在于更加关注问题内容,而不会特别关注具体的角色部分。gpt-3.5-turbo-0301模型有效期到6月1日,而gpt-3.5-turbo会持续更新。

    assistant助手和用户user则相当于已经指明了角色,content直接写入关注的问题即可。

5 示例程序

      (1)stream = False
import openai

def openai_reply(content, apikey):
    openai.api_key = apikey
    response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301
    messages=[
    {"role": "user", "content": content}
    ],
    temperature=0.5,
    max_tokens=1000,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0,
    )
    # print(response)
    return response.choices[0].message.content

if __name__ == '__main__':
    content = '你是谁?'
    ans = openai_reply(content, '你的APIKEY')
    print(ans)
      (2)stream = True
import time
import openai

openai.api_key = "你的APIKEY"
response = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "user", "content": 'how are you'}
    ],
  temperature=0,
  max_tokens=1000,
  stream=True,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0,
  user='RdFast智能创作机器人小程序'
)

print(response)
print('response["choices"][0]["text"]结果如下所示:')
ans = ''
for r in response:
    if 'content' in r.choices[0].delta:
      ans += r.choices[0].delta['content']
      print(ans)

print(ans)

3 API调用效果

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,941评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,397评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,345评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,851评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,868评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,688评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,414评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,319评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,775评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,945评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,096评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,789评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,437评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,993评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,107评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,308评论 3 372
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,037评论 2 355

推荐阅读更多精彩内容