多对多业务,数据库水平切分架构一次搞定

本文将以“好友中心”为例,介绍“多对多”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践。


一、什么是多对多关系

所谓的“多对多”,来自数据库设计中的“实体-关系”ER模型,用来描述实体之间的关联关系,一个学生可以选修多个课程,一个课程可以被多个学生选修,这里学生与课程时间的关系,就是多对多关系。


二、好友中心业务分析

好友关系主要分为两类,弱好友关系强好友关系,两类都有典型的互联网产品应用。


弱好友关系的建立,不需要双方彼此同意:

用户A关注用户B,不需要用户B同意,此时用户A与用户B为弱好友关系,对A而言,暂且理解为“关注”;

用户B关注用户A,也不需要用户A同意,此时用户A与用户B也为弱好友关系,对A而言,暂且理解为“粉丝”;

微博粉丝是一个典型的弱好友关系应用。


强好友关系的建立,需要好友关系双方彼此同意:

用户A请求添加用户B为好友,用户B同意,此时用户A与用户B则互为强好友关系,即A是B的好友,B也是A的好友;

QQ好友是一个典型的强好友关系应用。


好友中心是一个典型的多对多业务,一个用户可以添加多个好友,也可以被多个好友添加,其典型架构为:

friend-service:好友中心服务,对调用者提供友好的RPC接口

db:对好友数据进行存储


三、弱好友关系-元数据简版实现

通过弱好友关系业务分析,很容易了解到,其核心元数据为:

guanzhu(uid, guanzhu_uid);

fensi(uid, fensi_uid);

其中:

guanzhu表,用户记录uid所有关注用户guanzhu_uid

fensi表,用来记录uid所有粉丝用户fensi_uid


需要强调的是,一条弱关系的产生,会产生两条记录,一条关注记录,一条粉丝记录。


例如:用户A(uid=1)关注了用户B(uid=2),A多关注了一个用户,B多了一个粉丝,于是:

guanzhu表要插入{1, 2}这一条记录,1关注了2

fensi表要插入{2, 1}这一条记录,2粉了1


如何查询一个用户关注了谁呢?

回答:在guanzhu的uid上建立索引:

select * from guanzhu where uid=1;

即可得到结果,1关注了2。


如何查询一个用户粉了谁呢?

回答:在fensi的uid上建立索引:

select * from fensi where uid=2;

即可得到结果,2粉了1。


四、强好友关系-元数据实现一

通过强好友关系业务分析,很容易了解到,其核心元数据为:

friend(uid1, uid2);

其中:

uid1,强好友关系中一方的uid

uid2,强好友关系中另一方的uid


uid=1的用户添加了uid=2的用户,双方都同意加彼此为好友,这个强好友关系,在数据库中应该插入记录{1, 2}还是记录{2,1}呢?

回答:都可以

为了避免歧义,可以人为约定,插入记录时uid1的值必须小于uid2。


例如:有uid=1,2,3三个用户,他们互为强好友关系,那边数据库中可能是这样的三条记录

{1, 2}

{2, 3}

{1, 3}


如何查询一个用户的好友呢?

回答:假设要查询uid=2的所有好友,只需在uid1和uid2上建立索引,然后:

select * from friend where uid1=2

union

select * from friend where uid2=2

即可得到结果。


作业,为何不使用:

select * from friend uid1=2 or uid2=2


五、强好友关系-元数据实现二

强好友关系是弱好友关系的一个特例,A和B必须互为关注关系(也可以说,同时互为粉丝关系),即也可以使用关注表和粉丝表来实现:

guanzhu(uid, guanzhu_uid);

fensi(uid, fensi_uid);


例如:用户A(uid=1)和用户B(uid=2)为强好友关系,即相互关注:

用户A(uid=1)关注了用户B(uid=2),A多关注了一个用户,B多了一个粉丝,于是:

guanzhu表要插入{1, 2}这一条记录

fensi表要插入{2, 1}这一条记录


同时,用户B(uid=2)也关注了用户A(uid=1),B多关注了一个用户,A多了一个粉丝,于是:

guanzhu表要插入{2, 1}这一条记录

fensi表要插入{1, 2}这一条记录


六、数据冗余是实现多对多关系水平切分的常用实践

对于强好友关系的两类实现:

friend(uid1, uid2)表

数据冗余guanzhu表与fensi表(后文称正表T1与反表T2)

在数据量小时,看似无差异,但数据量大时,数据冗余的优势就体现出来了:

friend表,数据量大时,如果使用uid1来分库,那么uid2上的查询就需要遍历多库

正表T1与反表T2通过数据冗余来实现好友关系,{1, 2}{2,1}分别存在于两表中,故两个表都使用uid来分库,均只需要进行一次查询,就能找到对应的关注与粉丝,而不需要多个库扫描


数据冗余,是多对多关系,在数据量大时,数据水平切分的常用实践。


七、如何进行数据冗余

接下来的问题转化为,好友中心服务如何来进行数据冗余,常见有三种方法。


方法一:服务同步冗余

顾名思义,由好友中心服务同步写冗余数据,如上图1-4流程:

业务方调用服务,新增数据

服务先插入T1数据

服务再插入T2数据

服务返回业务方新增数据成功

优点

不复杂,服务层由单次写,变两次写

数据一致性相对较高(因为双写成功才返回)

缺点

请求的处理时间增加(要插入次,时间加倍)

数据仍可能不一致,例如第二步写入T1完成后服务重启,则数据不会写入T2


如果系统对处理时间比较敏感,引出常用的第二种方案

方法二:服务异步冗余

数据的双写并不再由好友中心服务来完成,服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据,如上图1-6流程:

业务方调用服务,新增数据

服务先插入T1数据

服务向消息总线发送一个异步消息(发出即可,不用等返回,通常很快就能完成)

服务返回业务方新增数据成功

消息总线将消息投递给数据同步中心

数据同步中心插入T2数据

优点

请求处理时间短(只插入1次)

缺点

系统的复杂性增加了,多引入了一个组件(消息总线)和一个服务(专用的数据复制服务)

因为返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)

在消息总线丢失消息时,冗余表数据会不一致


如果想解除“数据冗余”对系统的耦合,引出常用的第三种方案

方法三:线下异步冗余

数据的双写不再由好友中心服务来完成,而是由线下的一个服务或者任务来完成,如上图1-6流程:

业务方调用服务,新增数据

服务先插入T1数据

服务返回业务方新增数据成功

数据会被写入到数据库的log中

线下服务或者任务读取数据库的log

线下服务或者任务插入T2数据

优点

数据双写与业务完全解耦

请求处理时间短(只插入1次)

缺点

返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)

数据的一致性依赖于线下服务或者任务的可靠性


上述三种方案各有优缺点,可以结合实际情况选取。


数据冗余固然能够解决多对多关系的数据库水平切分问题,但又带来了新的问题,如何保证正表T1与反表T2的数据一致性呢?


八、如何保证数据的一致性

上一节的讨论可以看到,不管哪种方案,因为两步操作不能保证原子性,总有出现数据不一致的可能,高吞吐分布式事务是业内尚未解决的难题,此时的架构优化方向,并不是完全保证数据的一致,而是尽早的发现不一致,并修复不一致。


最终一致性,是高吞吐互联网业务一致性的常用实践。更具体的,保证数据最终一致性的方案有三种。


方法一:线下扫面正反冗余表全部数据

如上图所示,线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复。

优点

比较简单,开发代价小

线上服务无需修改,修复工具与线上服务解耦

缺点

扫描效率低,会扫描大量的“已经能够保证一致”的数据

由于扫描的数据量大,扫描一轮的时间比较长,即数据如果不一致,不一致的时间窗口比较长


有没有只扫描“可能存在不一致可能性”的数据,而不是每次扫描全部数据,以提高效率的优化方法呢?


方法二:线下扫描增量数据

每次只扫描增量的日志数据,就能够极大提高效率,缩短数据不一致的时间窗口,如上图1-4流程所示:

写入正表T1

第一步成功后,写入日志log1

写入反表T2

第二步成功后,写入日志log2

当然,我们还是需要一个离线的扫描工具,不停的比对日志log1和日志log2,如果发现数据不一致,就进行补偿修复

优点

虽比方法一复杂,但仍然是比较简单的

数据扫描效率高,只扫描增量数据

缺点

线上服务略有修改(代价不高,多写了2条日志)

虽然比方法一更实时,但时效性还是不高,不一致窗口取决于扫描的周期


有没有实时检测一致性并进行修复的方法呢?


方法三:实时线上“消息对”检测

这次不是写日志了,而是向消息总线发送消息,如上图1-4流程所示:

写入正表T1

第一步成功后,发送消息msg1

写入反表T2

第二步成功后,发送消息msg2

这次不是需要一个周期扫描的离线工具了,而是一个实时订阅消息的服务不停的收消息。

假设正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复

优点

效率高

实时性高

缺点

方案比较复杂,上线引入了消息总线这个组件

线下多了一个订阅总线的检测服务


however,技术方案本身就是一个投入产出比的折衷,可以根据业务对一致性的需求程度决定使用哪一种方法。


九、总结

文字较多,希望尽量记住如下几点:

好友业务是一个典型的多对多关系,又分为强好友与弱好友

数据冗余是一个常见的多对多业务数据水平切分实践

冗余数据的常见方案有三种

(1)服务同步冗余

(2)服务异步冗余

(3)线下异步冗余

数据冗余会带来一致性问题,高吞吐互联网业务,要想完全保证事务一致性很难,常见的实践是最终一致性

最终一致性的常见实践是,尽快找到不一致,并修复数据,常见方案有三种

 (1)线下全量扫描法

 (2)线下增量扫描法

 (3)线上实时检测法


转自:沈剑的微信文章

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,914评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,935评论 2 383
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,531评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,309评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,381评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,730评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,882评论 3 404
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,643评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,095评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,448评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,566评论 1 339
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,253评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,829评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,715评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,945评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,248评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,440评论 2 348

推荐阅读更多精彩内容