numpy dot,* ,multiply区别

dot运算

numpy官方文档上所写:

  • 如果 ab都是 1-D arrays,它的作用是计算内积。(不进行复共轭)
>>> np.dot(3, 4)
12
>>> np.dot([2j, 3+3j], [2j, 3j])
(-13+9j)
  • 如果 ab 是 2-D arrays, 作用是矩阵的乘积, ab的维数要满足矩阵乘积维数要求,此时推荐使用 matmula @ b
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
       [2, 2]])
  • 如果 ab 是 0-D (标量), 等价于 multiply ,推荐使用 numpy.multiply(a, b)a * b
  • 如果 a 是 N-D array 且 b 是 1-D array, 作用是在ab的最后一个轴上进行sum product运算。
>>> a = array([[[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.]]])
>>> b = np.array([1,2,3,4])
>>>np.dot(a, b)

array([[ 30.,  70., 110.],
       [ 30.,  70., 110.]])
  • 如果a 是 N-D array 且 b 是 M-D array (M>=2), 作用是在a的最后一个轴上和b的倒数第二个轴上进行sum product,即 :
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

*运算

对于ndarray, * 作用的是进行element-wise乘积,必要时需要broadcast,作用同np.multipy

>>> a = np.array(range(6)).reshape((2,3))                                                                                                                                                                     
>>> b = np.array([1,0,1])
>>> a
array([[0, 1, 2],
       [3, 4, 5]])
>>> b
array([1, 0, 1])
>>> c= a*b
>>> c
array([[0, 0, 2],
       [3, 0, 5]])
>>> d = a*b.T
>>> d
array([[0, 0, 2],
       [3, 0, 5]])

而对于matrix,* 则表示矩阵相乘,运算必须保证矩阵相乘的法则:

>>> A=np.matrix(a)
>>> B=np.matrix(b)
>>> A
matrix([[0, 1, 2],
        [3, 4, 5]])
>>> B
matrix([[1, 0, 1]])
>>> C=A*B
ValueError: shapes (2,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
#维数不匹配
>>> C=A*B.T
>>> C
matrix([[2],
        [8]])

multiply运算

函数原型是

numpy.multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'multiply'>

Returns:
y : ndarray
x1 和 x2的element-wise乘积,保证x1和x2有相同的维数,或者进行broadcast之后两者有相同的维数

>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])
#要进行broadcast
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容

  • NumPy是Python中关于科学计算的一个类库,在这里简单介绍一下。 来源:https://docs.scipy...
    灰太狼_black阅读 1,228评论 0 5
  • 先决条件 在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下,请看看Python Tutoria...
    舒map阅读 2,575评论 1 13
  • 来源:NumPy Tutorial - TutorialsPoint 译者:飞龙 协议:CC BY-NC-SA 4...
    布客飞龙阅读 32,770评论 6 96
  • 骗子~ 2016年12月7日 惠州 水钻打井,气钻打井两个都是打井,目的一样,但是施工工艺不一样。 我们总喜欢用正...
    laiyuchao阅读 168评论 0 0
  • 上篇文章《黑帽思考|对六顶思考帽的重新思考》提出了一个思考问题:在团队讨论中使用六顶思维帽时,为何博诺强调要大家同...
    李李木子Tting阅读 1,240评论 0 0