机器学习面试题(二):微博天气预测

题目的要求是:

已知且仅知全国所有城市距今千年来的每天(包括今天)最高最低气温,阴晴雨雪和风力风向,要预测明天北京的最高气温,请详述如何构造样本点和几大类特征会使得预测会很准已知且仅知全国所有城市距今千年来的每天(包括今天)最高最低气温,阴晴雨雪和风力风向,要预测明天北京的最高气温,请详述如何构造样本点和几大类特征会使得预测会很准确。

我们首先从业务系统来去考虑,天气系统这样的强时序性系统最本质的特点其实是有很大的时空局限性和相互作用的局域性,时间和空间以及地域都会对天气的预测产生很大的影响.而我们要去做一个很好的预测其实最主要的就是去减少variance,而使用深度神经网络(比如CNN)就会有这样特别好的特点,因为CNN本身就是线性微分迭代.如果是用过去一段时间的统计来订正预报的话,是可以的。鉴于天气预报的特点,训练期在45天是比较合适的.

而从业务本身来看,我们需要的参数会很多,因此必须要加入修正项,而修正项一定会有未知参数,当未知参数会很多,这样就变成了神经网络的调参,另一个方面,我们现在已经知道的参数尽管可能很全面,但是还是可能不够完整的描述系统,因此我们还要加入隐变量,这样就跟RNN很相似.而在处理参数上,的确是需要对样本进行变换,进行重新构造,比如温度保持不变,天气是离散的,而这样就需要映射成向量或者变量,风力不变,风向也是类似的映射.

其实我自己有一个很大胆的想法,就是用周志华教授的随机深林算法,样本无需进行任何处理,直接上.效果我觉得应该还OK.

PS:想到之前看到的一篇论文,这样的天气预测其实可以算是一种时空序列预测问题(spatiotemporal sequence prediction),而这篇论文可以将CNN和LSTM去结合起来,然后专门处理时空序列问题,其实也可以搭建神经网络去解决天气预测问题.

PSP:最后强调一下,统计推断并不代表可以不考虑物理了,实际上统计推断是在有物理知识下seeking alpha;如果你觉得不需要物理那么你一定做错了

参考资料:

微软在KDD的关于用神经网络预测天气的论文

http://erichorvitz.com/weather_hybrid_representation.pdf

ConvLSTM

https://arxiv.org/abs/1506.04214

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 207,113评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,644评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,340评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,449评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,445评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,166评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,442评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,105评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,601评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,066评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,161评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,792评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,351评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,352评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,584评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,618评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,916评论 2 344