NWR和Quorum机制

分布式系统中的读写模型

分布式系统是由多个节点(指代一台服务器、存储设备等)构成,由于网络异常、宕机等节点并不能保证正常工作,特别是在节点数量很大的时候,出现异常状况的节点几乎是肯定的。为了保证系统的正常运行,能够提供可靠的服务,分布式系统中对于数据的存储采用多份数据副本(注:这里的副本并非只用来备份,它可参与提供系统服务)来保证可靠性,也就是其中一个节点上读取数据失败了那么可以转向另外一个存有相同数据副本的节点读取返回给用户。这个过程对于用户来说是透明的。那么随之而来的就会带来数据的副本数据的不一致性,例如:用户提交一次修改后,那么原先保存的副本显然就与当前数据不一致了。

解决这个问题最简单的方法 Read Only Write All ,就是在用户提交修改操作后,系统确保存储的数据所有的副本全部完成更新后,再告诉用户操作成功;而读取数据的时候只需要查询其中的一个副本数据返回给用户就行了。 在很少对存储的数据进行修改的情形下(例如存档历史数据供以后分析),这种解决方案很好。如遇到经常需要修改的情形,写操作时延时现象就很明显,加上并发或者连续的执行的话效率就可想而知了。

实质,这是由于 Write 和 Read 负载不均衡所致,Read 很轻松,Write 深表压力!

解释:

简单概括说来就是, Quorum 是一种集合 , l 中任意取集合S,R ,S,R 都存在交集。当然,本文并不打算多讲它的数学定义方面的理解,这里只是提供个信息,看不懂也没事,联系到前面的分布式读写模型就能很容易理解这个了。

回到文章的开头,我们来看看是怎么运用Quorum机制来解决读写模型中读写的负载均衡。其实,关键的是更新多少个数据副本后,使得读取时总能读到有效数据?

读模型:

假设总共有 **N(副本个数) **个数据副本,其中 k 个已经更新,N-k 个未更新的,那么我们任意读取 N-k+1(读取副本的个数)个数据的时候就必定至少有1个是属于更新了的k个里面的,也就是 Quorum 的交集,我们只需比较 读取的 N-k+1 中版本最高的那个数据返回给用户就可以得到最新更新的数据了。

写模型:

我也只需要完成k(写更新副本的个数,大于N/2)个副本的更新后,就可以告诉用户操作完成而不需要 Write All 了,当然告诉完用户完成操作后,系统内部还是会慢慢的把剩余的副本更新,这对于用户是透明的。可以看到,我们把 Write 身上的部分负载转移到了Read上,Read读取多个副本,使得Write不会过于劳累,不好的是弱化了分布式系统中的数据一致性。至于转移多少负载比较合适,这个需要根据分布式系统的具体需求中对数据一致性的要求。不过,CAP 理论告诉我们没有完美的方案。

基于Quorum投票的冗余控制算法

Quorom 机制,是一种分布式系统中常用的,用来保证数据冗余和最终一致性的投票算法,其主要数学思想来源于鸽巢原理

在有冗余数据的分布式存储系统当中,冗余数据对象会在不同的机器之间存放多份拷贝。但是同一时刻一个数据对象的多份拷贝只能用于读或者用于写。

该算法可以保证同一份数据对象的多份拷贝不会被超过两个访问对象读写。

算法来源于[Gifford, 1979][3][1]。 分布式系统中的每一份数据拷贝对象都被赋予一票。每一个操作必须要获得最小的读票数(Vr)或者最小的写票数(Vw)才能读或者写。如果一个系统有V票(意味着一个数据对象有V份冗余拷贝),那么这最小读写票必须满足:

  1. Vr + Vw > V

  2. Vw > V/2

第一条规则保证了一个数据不会被同时读写。当一个写操作请求过来的时候,它必须要获得Vw个冗余拷贝的许可。而剩下的数量是V-Vw 不够Vr,因此不能再有读请求过来了。同理,当读请求已经获得了Vr个冗余拷贝的许可时,写请求就无法获得许可了。

第二条规则保证了数据的串行化修改。一份数据的冗余拷贝不可能同时被两个写请求修改。

算法好处

在分布式系统中,冗余数据是保证可靠性的手段,因此冗余数据的一致性维护就非常重要。一般而言,一个写操作必须要对所有的冗余数据都更新完成了,才能称为成功结束。比如一份数据在5台设备上有冗余,因为不知道读数据会落在哪一台设备上,那么一次写操作,必须5台设备都更新完成,写操作才能返回。

对于写操作比较频繁的系统,这个操作的瓶颈非常大。Quorum算法可以让写操作只要写完3台就返回。剩下的由系统内部缓慢同步完成。而读操作,则需要也至少读3台,才能保证至少可以读到一个最新的数据。

Quorum的读写最小票数可以用来做为系统在读、写性能方面的一个可调节参数。写票数Vw越大,则读票数Vr越小,这时候系统写的开销就大。反之则写的开销就小

该算法满足CAP理论的 A(可用性)和P(容错性),不满足 C(一致性)

NWR 策略读写模型的例子

假设两个进程同时来更新这份数据,进程W1要把值改写成C,进程W2要把值改写成B,那就有可能出现下图的情形,两个进程各拿到一个副本改写,都认为自己的写操作是成功的,结果却留给系统三个不同的副本,这样就出现数据副本不一致的问题。

所以公式W> N/2, 实际上变成了一个写的锁,意味着只有写了过半数副本的才算写成功,拿不到的就返回失败,解决了竞争的问题。如下图,W1的会话成功,W2的会话就返回失败。

W> N/2,同时意味着不需要把所有的副本都写完,未完成的留给系统自己后台慢慢同步,那这个时候问题就来了,一个新的会话过来读数据的时候,分配到的副本有可能是没来得及更新的。这时候R1读回去的就是过时的数据B,而非最新的数据C

第2个公式变形下就是R> N-W,R=2就避免正好倒霉读到没更新的那一个。这样读回去C和B两个数据,再比较后取最新的C。所以W+R> N 能够保证每个读的请求至少读到一份最新的数据,

转自

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 197,597评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,053评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,583评论 0 326
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,888评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,772评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,536评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,922评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,554评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,838评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,861评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,677评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,483评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,928评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,104评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,403评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,945评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,156评论 2 339

推荐阅读更多精彩内容