Pandas包

熊猫包是一个非常好用滴数据分析包~

加载数据

1、导入pandas库

import pandas as pd

2、导入CSV或者XLSX文件
(导入csv文件时,将header设置为None对于有表头的数据会报错,应改为header=0)

#此次导入的是泰坦尼克号数据集...
df = pd.read_csv("titanic.csv", header=0)

3、显示前5行数据

df.head() #head的默认size大小是5,所以会返回5个数据

探索性分析

1、叙述性分析

df.describe() 

describle会输出一些统计性的数据,count、mean、std、min....



2、直方图
df["Age"].hist() #输出age的直方图



3、唯一值
df["Embarked"].unique() #输出Embarked独树一帜的量
df["embarked"].unique()
output:
array(['S', 'C', nan, 'Q'], dtype=object)

4、按列名查看

df["Name"].head()

5、筛选数据

df[df["sex"]=="female"].head() # only the female data appear

6、排序
df.sort(,) #第一个参数是某列,ascending(meaning:上升) =False代表降序输出

df.sort_values("age", ascending=False).head()

7、数据聚合

survived_group = df.groupby("survived")
survived_group.mean()

8、使用索引用 iloc 查看数据

df.iloc[0, :] 
# iloc 函数通过索引中的特定位置查看某行或列的数据,所以这里的索引值应该只接受整数

9、获取指定位置的数据

df.iloc[0, 1]
'Allen, Miss. Elisabeth Walton'

10、根据索引值用 loc 查看

df.loc[0] # 用loc从索引中插卡具有特定标签的行或列

预处理

# 查看含有至少一个NaN值的数据
df[pd.isnull(df).any(axis=1)].head()

# 删除含有NaN值的数据行
df = df.dropna() # 删除含有NaN值的行
df = df.reset_index() # 重置行的索引
df.head()

# 删除多列
df = df.drop(["name", "cabin", "ticket"], axis=1) # 暂时不需要类型为文本的数据条目
df.head()

# 特征值映射
df['sex'] = df['sex'].map( {'female': 0, 'male': 1} ).astype(int)
df["embarked"] = df['embarked'].dropna().map( {'S':0, 'C':1, 'Q':2} ).astype(int)
df.head()

特征工程

# 用lambda表达式创建新特征
def get_family_size(sibsp, parch):
    family_size = sibsp + parch
    return family_size

df["family_size"] = df[["sibsp", "parch"]].apply(lambda x: get_family_size(x["sibsp"], x["parch"]), axis=1)
df.head()
# 重新组织表头
df = df[['pclass', 'sex', 'age', 'sibsp', 'parch', 'family_size', 'fare', 'embarked', 'survived']]
df.head()

存储数据

# 把Dataframe存进CSV文件
df.to_csv("processed_titanic.csv", index=False)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容