tf.nn.embedding_lookup

儿童节快乐,保留初心,砥砺前行

  • embedding通俗易懂说就是将word映射为向量。
  • 对自然语言处理中需要让机器理解word与word之间的关系,例如法国对应巴黎、中国对应北京,就需要用到embedding技术使词与词产生的向量之间存在某种联系(例如意思相近的词产生的向量在空间上更加接近等等)。这些都是后话。
  • 这里只记录tensorflow中关于embedding给出的一个函数
    embedding_lookup
    tensorflow官方文档见这里
tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)

作用:Looks up ids in a list of embedding tensors:也就是说在参数params中查找ids所对应的表示,如果这样的叙述并不清楚,那么参考下边这个简单的例子。

import numpy as np
import tensorflow as tf

sess = tf.InteractiveSession()

embedding = tf.Variable(np.identity(6, dtype=np.int32))
input_ids = tf.placeholder(dtype=tf.int32, shape=[None])
input_embedding = tf.nn.embedding_lookup(embedding, input_ids)

sess.run(tf.global_variables_initializer())
print sess.run(embedding)
print sess.run(input_embedding, feed_dict={input_ids: [4, 0, 2, 4, 5, 1, 3, 0]})

运行结果

jianshu6201.png

从以上简单示例可以看出,embedding将变量表现成了one-hot形式,而input_embedding = tf.nn.embedding_lookup(embedding, input_ids)就是把input_ids中给出的tensor表现成embedding中的形式。

简单来说上图中红线上部是创建了一个embedding词典,红线下部是通过输入的input_ids查询上部的字典得到embedding后的值。而字典是可以由用户随意创建的,图中给出的是一个one-hot字典,还可以自由创建其他字典,例如使用正态分布或均匀分布产生(0,1)的随机数创建任意维度的embedding字典

  • 也就是说 embedding_lookup是tensorflow中给出的用于以某种方式进行embedding的函数

如果参数partition_strategy是 "mod",我们把每一个id分配到间隔p的分区中(p = id % len(params))。例如,13个ids划分为5个分区:[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]
如果参数partition_strategy是 "div",我们把用连续的方式将ids分配到不同的分区。例如,13个ids划分为5个分区:[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容