五、Flink的分布式文件缓存

分布式文件缓存

Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取。 此缓存的工作机制如下:程序注册一个文件或者目录(本地或者远程文件系统,例如hdfs或者s3),通过ExecutionEnvironment注册缓存文件并为它起一个名称。 当程序执行,Flink自动将文件或者目录复制到所有taskmanager节点的本地文件系统,仅会执行一次。用户可以通过这个指定的名称查找文件或者目录,然后从taskmanager节点的本地文件系统访问它。
区别于广播变量

示例

在ExecutionEnvironment中注册一个文件:

//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

//1:注册一个文件,可以使用hdfs上的文件 也可以是本地文件进行测试
env.registerCachedFile("/Users/wangzhiwu/WorkSpace/quickstart/text","a.txt");

在用户函数中访问缓存文件或者目录(这里是一个map函数)。这个函数必须继承RichFunction,因为它需要使用RuntimeContext读取数据:

DataSet<String> result = data.map(new RichMapFunction<String, String>() {
            private ArrayList<String> dataList = new ArrayList<String>();

            @Override
            public void open(Configuration parameters) throws Exception {
                super.open(parameters);
                //2:使用文件
                File myFile = getRuntimeContext().getDistributedCache().getFile("a.txt");
                List<String> lines = FileUtils.readLines(myFile);
                for (String line : lines) {
                    this.dataList.add(line);
                    System.err.println("分布式缓存为:" + line);
                }
            }

            @Override
            public String map(String value) throws Exception {
                //在这里就可以使用dataList
                System.err.println("使用datalist:" + dataList + "------------" +value);
                //业务逻辑
                return dataList +":" +  value;
            }
        });

        result.printToErr();
    }
  • 完整代码
import org.apache.commons.io.FileUtils;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.configuration.Configuration;

import java.io.File;
import java.util.ArrayList;
import java.util.List;

public class DisCacheDemo {
    public static void main(String[] args) throws Exception {
        // Get runtime environment
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // register a file
        env.registerCachedFile("/Users/xxx/Documents/xxx/git/shopee-flink/pom.xml","pom.xml");

        DataSource<String> data = env.fromElements("a", "b", "c", "d");

        DataSet<String> result = data.map(new RichMapFunction<String, String>() {
            private ArrayList<String> dataList = new ArrayList<>();

            @Override
            public void open(Configuration parameters) throws Exception {
                super.open(parameters);
                // read from file
                File myFile = getRuntimeContext().getDistributedCache().getFile("pom.xml");
                List<String> lines = FileUtils.readLines(myFile);
                lines.forEach(line -> {
                    dataList.add(line);
                    System.out.println("cache: " + line);
                });
            }

            @Override
            public String map(String value) throws Exception {
                System.out.print("dataList:" + dataList + "--------" + value);
                // do your business logic
                return dataList +":" +  value;
            }
        });

        result.printToErr();
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容

  • 本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习...
    大数据研习社阅读 2,307评论 0 2
  • 当数据量增大到超出了单个物理计算机存储容量时,有必要把它分开存储在多个不同的计算机中。那些管理存储在多个网络互连的...
    单行线的旋律阅读 1,918评论 0 7
  • 有些人就像天边的星辰, 可望而不可即 你只需远远的看着她就好, 不需要尝试靠近。 因为, 那样做不仅会得不到, 反...
    CaostGrace阅读 219评论 0 0
  • 想看的书这么多,如何选书,选书的标准是什么呢?今天禁言群连长分享的200篇剽悍晨读目录提醒了我。3月读书营...
    涛涛教练阅读 280评论 0 6
  • 那哭泣的已是昨日,那奔腾着向前涌来的,也不是即将上演的戏稿,尘封的日,尘封的夜,尘封的过往已被我装订,装订得极为拙...
    草团子阅读 345评论 0 4