初识metrics

[TOC]
Metrics,谷歌翻译就是度量的意思。当我们需要为某个系统某个服务做监控、做统计,就需要用到Metrics。

举个栗子,一个图片压缩服务:

  1. 每秒钟的请求数是多少(TPS)?
  2. 平均每个请求处理的时间?
  3. 请求处理的最长耗时?
  4. 等待处理的请求队列长度?
  5. 又或者一个缓存服务:

缓存的命中率?
平均查询缓存的时间?
基本上每一个服务、应用都需要做一个监控系统,这需要尽量以少量的代码,实现统计某类数据的功能。

以 Java 为例,目前最为流行的 metrics 库是来自 Coda Hale 的 dropwizard/metrics,该库被广泛地应用于各个知名的开源项目中。例如 Hadoop,Kafka,Spark,JStorm 中。

本文就结合范例来主要介绍下 dropwizard/metrics 的概念和用法。

Maven 配置
我们需要在pom.xml中依赖 metrics-core 包:

<dependencies>
    <dependency>
        <groupId>io.dropwizard.metrics</groupId>
        <artifactId>metrics-core</artifactId>
        <version>${metrics.version}</version>
    </dependency>
</dependencies>

注:在POM文件中需要声明 ${metrics.version} 的具体版本号,如 3.1.0

Metric Registries

MetricRegistry类是Metrics的核心,它是存放应用中所有metrics的容器。也是我们使用 Metrics 库的起点。

MetricRegistry registry = new MetricRegistry();
每一个 metric 都有它独一无二的名字,Metrics 中使用句点名字,如 com.example.Queue.size。当你在 com.example.Queue 下有两个 metric 实例,可以指定地更具体:com.example.Queue.requests.size 和 com.example.Queue.response.size 。使用MetricRegistry类,可以非常方便地生成名字。

MetricRegistry.name(Queue.class, "requests", "size")
MetricRegistry.name(Queue.class, "responses", "size")

Metrics 数据展示
Metircs 提供了 Report 接口,用于展示 metrics 获取到的统计数据。metrics-core中主要实现了四种 reporter: JMX, console, SLF4J, 和 CSV。 在本文的例子中,我们使用 ConsoleReporter 。

五种 Metrics 类型

Gauges

最简单的度量指标,只有一个简单的返回值,例如,我们想衡量一个待处理队列中任务的个数,代码如下:

public class GaugeTest {

    public static Queue<String> q = new LinkedList<String>();

    public static void main(String[] args) throws InterruptedException {
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        registry.register(MetricRegistry.name(GaugeTest.class, "queue", "size"), 
        new Gauge<Integer>() {

            public Integer getValue() {
                return q.size();
            }
        });

        while(true){
            Thread.sleep(1000);
            q.add("Job-xxx");
        }
    }
}

运行之后的结果如下:

-- Gauges ------------------------------------------------
com.alibaba.wuchong.metrics.GaugeTest.queue.size
value = 6
其中第7行和第8行添加了ConsoleReporter,可以每秒钟将度量指标打印在屏幕上,理解起来会更清楚。

但是对于大多数队列数据结构,我们并不想简单地返回queue.size(),因为java.util和java.util.concurrent中实现的#size()方法很多都是 O(n) 的复杂度,这会影响 Gauge 的性能。

Counters

Counter 就是计数器,Counter 只是用 Gauge 封装了 AtomicLong 。我们可以使用如下的方法,使得获得队列大小更加高效。

public class CounterTest {

    public static Queue<String> q = new LinkedBlockingQueue<String>();

    public static Counter pendingJobs;

    public static Random random = new Random();

    public static void addJob(String job) {
        pendingJobs.inc();
        q.offer(job);
    }

    public static String takeJob() {
        pendingJobs.dec();
        return q.poll();
    }

    public static void main(String[] args) throws InterruptedException {
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        pendingJobs = registry.counter(MetricRegistry.name(Queue.class,"pending-jobs","size"));

        int num = 1;
        while(true){
            Thread.sleep(200);
            if (random.nextDouble() > 0.7){
                String job = takeJob();
                System.out.println("take job : "+job);
            }else{
                String job = "Job-"+num;
                addJob(job);
                System.out.println("add job : "+job);
            }
            num++;
        }
    }
}

运行之后的结果大致如下:

add job : Job-15
add job : Job-16
take job : Job-8
take job : Job-10
add job : Job-19
15-8-1 16:11:31 ============================================
-- Counters ----------------------------------------------
java.util.Queue.pending-jobs.size
             count = 5

Meters

Meter度量一系列事件发生的速率(rate),例如TPS。Meters会统计最近1分钟,5分钟,15分钟,还有全部时间的速率。

public class MeterTest {

    public static Random random = new Random();

    public static void request(Meter meter){
        System.out.println("request");
        meter.mark();
    }

    public static void request(Meter meter, int n){
        while(n > 0){
            request(meter);
            n--;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Meter meterTps = registry.meter(MetricRegistry.name(MeterTest.class,"request","tps"));

        while(true){
            request(meterTps,random.nextInt(5));
            Thread.sleep(1000);
        }

    }
}

运行结果大致如下:

request
15-8-1 16:23:25 ============================================

-- Meters ------------------------------------------------
com.alibaba.wuchong.metrics.MeterTest.request.tps
             count = 134
         mean rate = 2.13 events/second
     1-minute rate = 2.52 events/second
     5-minute rate = 3.16 events/second
    15-minute rate = 3.32 events/second

注:非常像 Unix 系统中 uptime 和 top 中的 load。

Histograms

Histogram统计数据的分布情况。比如最小值,最大值,中间值,还有中位数,75百分位, 90百分位, 95百分位, 98百分位, 99百分位, 和 99.9百分位的值(percentiles)。

比如request的大小的分布:

public class HistogramTest {
    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Histogram histogram = new Histogram(new ExponentiallyDecayingReservoir());
        registry.register(MetricRegistry.name(HistogramTest.class, "request", "histogram"), histogram);
        
        while(true){
            Thread.sleep(1000);
            histogram.update(random.nextInt(100000));
        }

    }
}

运行之后结果大致如下:

-- Histograms --------------------------------------------
java.util.Queue.queue.histogram
             count = 56
               min = 1122
               max = 99650
              mean = 48735.12
            stddev = 28609.02
            median = 49493.00
              75% <= 72323.00
              95% <= 90773.00
              98% <= 94011.00
              99% <= 99650.00
            99.9% <= 99650.00

Timers

Timer其实是 Histogram 和 Meter 的结合, histogram 某部分代码/调用的耗时, meter统计TPS。

public class TimerTest {

    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Timer timer = registry.timer(MetricRegistry.name(TimerTest.class,"get-latency"));

        Timer.Context ctx;

        while(true){
            ctx = timer.time();
            Thread.sleep(random.nextInt(1000));
            ctx.stop();
        }

    }

}

运行之后结果如下:

-- Timers ------------------------------------------------
com.alibaba.wuchong.metrics.TimerTest.get-latency
count = 38
mean rate = 1.90 calls/second
1-minute rate = 1.66 calls/second
5-minute rate = 1.61 calls/second
15-minute rate = 1.60 calls/second
min = 13.90 milliseconds
max = 988.71 milliseconds
mean = 519.21 milliseconds
stddev = 286.23 milliseconds
median = 553.84 milliseconds
75% <= 763.64 milliseconds
95% <= 943.27 milliseconds
98% <= 988.71 milliseconds
99% <= 988.71 milliseconds
99.9% <= 988.71 milliseconds
其他
初次之外,Metrics还提供了 HealthCheck 用来检测某个某个系统是否健康,例如数据库连接是否正常。还有Metrics Annotation,可以很方便地实现统计某个方法,某个值的数据。感兴趣的可以点进链接看看。

kafka metrics

kafka使用Yammer Metrics进行监控,Yammer Metrics是一个java的监控库。
kafka默认有很多的监控指标,默认都使用JMX接口远程访问,具体方法是在启动broker和clients之前设置JMX_PORT:
JMX_PORT=9997 bin/kafka-server-start.sh config/server.properties
Kafka的每个监控指标都是以JMX MBEAN的形式定义的,MBEAN是一个被管理的资源实例。

metrics上报

ConsoleReporter

对于简单指标的计算,可以使用定期向控制台报告:

final ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS).build();
metrics.register(“jvm.mem”, new MemoryUsageGaugeSet());
metrics.register(“jvm.gc”, new GarbageCollectorMetricSet());

reporter.start(5, TimeUnit.MINUTES);

JmxReporter

使用Jmx上报数据,转化为MBean,注:不建议在生产环境中使用,JMX的RPC API是不可靠的,但为了开发和浏览可选可视化工具:

final JmxReporter reporter = JmxReporter.forRegistry(registry).build();
reporter.start();

CsvReporter

对于相对复杂的指标,可将同一个metric创建.csv文件,并将定期上报的数据按新行写入:

final CsvReporter reporter = CsvReporter.forRegistry(registry)
.formatFor(Locale.US)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build(new File(“~/projects/data/“));
reporter.start(1, TimeUnit.SECONDS);

Slf4jReporter

可以将上报数据记录slf4j日志:

final Slf4jReporter reporter = Slf4jReporter.forRegistry(registry)
.outputTo(LoggerFactory.getLogger(“com.example.metrics”))
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();
reporter.start(1, TimeUnit.MINUTES);

HTTP Reporter

需搭建web服务,新增Listener事件,完成相应metrics指标注册,目前支持HealthCheckServlet,ThreadDumpServlet,MetricsServlet,PingServlet四类,最后启动服务即可请求获取Json格式的监控数据

使用经验总结

一般情况下,当我们需要统计某个函数被调用的频率(TPS),会使用Meters。当我们需要统计某个函数的执行耗时时,会使用Histograms。当我们既要统计TPS又要统计耗时时,我们会使用Timers。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容