R-多元方差分析

例1.研究谷物中的卡路里、脂肪和糖含量是否会因为储存架位置的不同而发生变化。其中1代表底层货架,2代表中层货架,3代表顶层货架。
H0:μ1=μ2=μ3,
H1:μi≠μj,至少存在一对i≠j

数据:MASS包-Uscereal

代码

library(MASS)
attach(UScereal)
shelf=factor(shelf) #转化为因子变量
y=cbind(calories,fat,sugars) #将因变量合并成一个矩阵 
aggregate(y,by=list(shelf),FUN=mean)  #求各类均值
fit=manova(y~shelf) 
summary(fit)  #多元方差分析
summary.aov(fit)  #对每个变量做单因素方差分析

运行结果

> library(MASS)
Warning message:
程辑包‘MASS’是用R版本3.4.4 来建造的 

> attach(UScereal)
The following object is masked _by_ .GlobalEnv: shelf

> shelf=factor(shelf) #转化为因子变量

> y=cbind(calories,fat,sugars) #将因变量合并成一个矩阵

> aggregate(y,by=list(shelf),FUN=mean)  #求各类均值
  Group.1 calories       fat    sugars
1       1 119.4774 0.6621338  6.295493
2       2 129.8162 1.3413488 12.507670
3       3 180.1466 1.9449071 10.856821

> fit=manova(y~shelf)

> summary(fit)  #多元方差分析
          Df Pillai approx F num Df den Df    Pr(>F)    
shelf      2 0.4021   5.1167      6    122 0.0001015 ***
Residuals 62                                            
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


> summary.aov(fit)  #对每个变量做单因素方差分析
 Response calories :
            Df Sum Sq Mean Sq F value    Pr(>F)    
shelf        2  50435 25217.6  7.8623 0.0009054 ***
Residuals   62 198860  3207.4                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response fat :
            Df Sum Sq Mean Sq F value  Pr(>F)  
shelf        2  18.44  9.2199  3.6828 0.03081 *
Residuals   62 155.22  2.5035                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response sugars :
            Df  Sum Sq Mean Sq F value   Pr(>F)   
shelf        2  381.33 190.667  6.5752 0.002572 **
Residuals   62 1797.87  28.998                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  • 多元方差分析中,F值=5.1167,P值=0.0001<0.05,故拒绝原假设,认为货架位置不同,卡路里、脂肪和糖含量存在显著差异。
  • 进一步的,根据单因素方差分析结果,不同货架位置的卡路里、脂肪和糖含量分别存在显著差异。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容