Java8 Stream 使用及其详解

一、什么是Stream

1.Stream 作为 Java 8 的一大亮点,它与Java.io 包里的InputStream 和 OutputStream是完全不同的概念。
它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。
Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),
或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。
同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。
通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。
所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。

二、Java7和Java8 聚合操作的区别。

// java 7 中的排序和取值实现
List<Transaction> groceryTransactions = new Arraylist<>();
for(Transaction t: transactions){
 if(t.getType() == Transaction.GROCERY){
 groceryTransactions.add(t);
 }
}
Collections.sort(groceryTransactions, new Comparator(){
 public int compare(Transaction t1, Transaction t2){
 return t2.getValue().compareTo(t1.getValue());
 }
});
List<Integer> transactionIds = new ArrayList<>();
for(Transaction t: groceryTransactions){
 transactionsIds.add(t.getId());
}
// 而在 Java 8 使用 Stream,代码更加简洁易读;而且使用并发模式,程序执行速度更快。
List<Integer> transactionsIds = transactions.parallelStream().
 filter(t -> t.getType() == Transaction.GROCERY).
 sorted(comparing(Transaction::getValue).reversed()).
 map(Transaction::getId).
 collect(toList());

三、Stream 总览

Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。
原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作。
比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

##  Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。
##  但是Stream 的另外一大特点是,数据源本身可以是无限的。

而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。
而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。
Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。

//  有多种方式生成 Stream :
从 Collection 和数组, 用得最多
  Collection.stream()
  Collection.parallelStream()
  Arrays.stream(T array) or Stream.of()

从 BufferedReader
  java.io.BufferedReader.lines()

其它
  Random.ints()
  BitSet.stream()
  Pattern.splitAsStream(java.lang.CharSequence)
  JarFile.stream()

// 流的操作类型分为两种:
Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。
这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。

Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。
Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 (副作用)side effect。

#还有一种操作被称为 short-circuiting。用以指:
对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。
对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

// 一个流操作的示例。filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换。
最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。
int sum = widgets.stream()
.filter(w -> w.getColor() == RED)
 .mapToInt(w -> w.getWeight())
 .sum();

四、Stream 的使用详解

简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。

下面提供最常见的几种构造 Stream 的样例。
构造流的几种常见方法
// 1. Individual values
Stream stream = Stream.of("a", "b", "c");
// 2. Arrays
String [] strArray = new String[] {"a", "b", "c"};
stream = Stream.of(strArray);
stream = Arrays.stream(strArray);
// 3. Collections
List<String> list = Arrays.asList(strArray);
stream = list.stream();

##需要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:
IntStream、LongStream、DoubleStream。当然我们也可以用 Stream<Integer>、Stream<Long>、Stream<Double>,
但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的 Stream。
Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。

//  数值流的构造
IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);
IntStream.range(1, 3).forEach(System.out::println);
IntStream.rangeClosed(1, 3).forEach(System.out::println);

##流转换为其它数据结构,用得很多
// 1. Array
String[] strArray1 = stream.toArray(String[]::new);
// 2. Collection
List<String> list1 = stream.collect(Collectors.toList());
List<String> list2 = stream.collect(Collectors.toCollection(ArrayList::new));
Set set1 = stream.collect(Collectors.toSet());
Stack stack1 = stream.collect(Collectors.toCollection(Stack::new));
// 3. String
String str = stream.collect(Collectors.joining()).toString();
#PS: 一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。

流的操作

接下来,当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。
常见的操作可以归类如下。

Intermediate:

map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered

Terminal:

forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator

Short-circuiting:

anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

##>>  map 和 flatMap   <<##
我们先来看 map。如果你熟悉 scala 这类函数式语言,对这个方法应该很了解。
它的作用就是把 input Stream 的每一个元素,映射成 output Stream 的另外一个元素。

//  转换大写
List<String> output = wordList.stream().
map(String::toUpperCase).
collect(Collectors.toList());

//  平方数
List<Integer> nums = Arrays.asList(1, 2, 3, 4);
List<Integer> squareNums = nums.stream().
map(n -> n * n).
collect(Collectors.toList());
## 从上面例子可以看出,map 生成的是个 1:1 映射,每个输入元素,都按照规则转换成为另外一个元素。
## 还有一些场景,是一对多映射关系的,这时需要 flatMap。

//  一对多,flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起。
//  最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。
Stream<List<Integer>> inputStream = Stream.of(
 Arrays.asList(1),
 Arrays.asList(2, 3),
 Arrays.asList(4, 5, 6)
 );
Stream<Integer> outputStream = inputStream.
flatMap((childList) -> childList.stream());

##>> filter   <<##
filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。

//  留下偶数,经过条件“被 2 整除”的 filter,剩下的数字为 {2, 4, 6}。
Integer[] sixNums = {1, 2, 3, 4, 5, 6};
Integer[] evens =
Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);

//  把单词挑出来,这段代码首先把每行的单词用 flatMap 整理到新的 Stream,
//  然后保留长度不为 0 的,就是整篇文章中的全部单词了。
List<String> output = reader.lines().
 flatMap(line -> Stream.of(line.split(REGEXP))).
 filter(word -> word.length() > 0).
 collect(Collectors.toList());

##>>  forEach  <<##
forEach 方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。

// 打印姓名(forEach 和 java8之前版本的代码 的对比)
// Java 8
roster.stream()
 .filter(p -> p.getGender() == Person.Sex.MALE)
 .forEach(p -> System.out.println(p.getName()));
// Java 8之前版本
for (Person p : roster) {
 if (p.getGender() == Person.Sex.MALE) {
 System.out.println(p.getName());
 }
}

## 另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了。
## 你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:
stream.forEach(element -> doOneThing(element));
stream.forEach(element -> doAnotherThing(element));
//   同时,forEach 不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。

##>>   peek  <<##
//  相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。如下是出现在该 api javadoc 上的一个示例。
//  peek 对每个元素执行操作并返回一个新的 Stream
Stream.of("one", "two", "three", "four")
 .filter(e -> e.length() > 3)
 .peek(e -> System.out.println("Filtered value: " + e))
 .map(String::toUpperCase)
 .peek(e -> System.out.println("Mapped value: " + e))
 .collect(Collectors.toList());



##>>   findFirst   <<##
这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。
这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。
使用它的目的是尽可能避免 NullPointerException。

// Optional 的两个用例
String strA = " abcd ", strB = null;
print(strA);
print("");
print(strB);
getLength(strA);
getLength("");
getLength(strB);
public static void print(String text) {
 // Java 8
 Optional.ofNullable(text).ifPresent(System.out::println);
 // Pre-Java 8
 if (text != null) {
 System.out.println(text);
 }
 }
public static int getLength(String text) {
 // Java 8
return Optional.ofNullable(text).map(String::length).orElse(-1);
 // Pre-Java 8
// return if (text != null) ? text.length() : -1;
 };

在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,
能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。


##>>   reduce   <<##
这个方法的主要作用是把 Stream 元素组合起来。
它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。
从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于
Integer sum = integers.reduce(0, (a, b) -> a+b); 或
Integer sum = integers.reduce(0, Integer::sum);

// 也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。
//  reduce 的用例
// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat); 
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min); 
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F").
 filter(x -> x.compareTo("Z") > 0).
 reduce("", String::concat);

上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。
这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。

##>>   limit/skip   <<##
limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。

// limit 和 skip 对运行次数的影响
public void testLimitAndSkip() {
 List<Person> persons = new ArrayList();
 for (int i = 1; i <= 10000; i++) {
 Person person = new Person(i, "name" + i);
 persons.add(person);
 }
List<String> personList2 = persons.stream().
map(Person::getName).limit(10).skip(3).collect(Collectors.toList());
 System.out.println(personList2);
}
private class Person {
 public int no;
 private String name;
 public Person (int no, String name) {
 this.no = no;
 this.name = name;
 }
 public String getName() {
 System.out.println(name);
 return name;
 }

// 输出结果为:
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]
这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,
管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。

有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,
原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,
所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。

//  limit 和 skip 对 sorted 后的运行次数无影响
List<Person> persons = new ArrayList();
 for (int i = 1; i <= 5; i++) {
 Person person = new Person(i, "name" + i);
 persons.add(person);
 }
List<Person> personList2 = persons.stream().sorted((p1, p2) -> 
p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
System.out.println(personList2);
即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。
// 最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,
// 因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。

##>>   sorted   <<##
对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于:
你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序.
这能帮助程序明显缩短执行时间。我们对清单 14 进行优化:

//  优化:排序前进行 limit 和 skip
List<Person> persons = new ArrayList();
 for (int i = 1; i <= 5; i++) {
 Person person = new Person(i, "name" + i);
 persons.add(person);
 }
List<Person> personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList());
System.out.println(personList2);

##>>   distinct   <<##
下面的例子则使用 distinct 来找出不重复的单词。
// 找出全文的单词,转小写,并排序
List<String> words = br.lines().
 flatMap(line -> Stream.of(line.split(" "))).
 filter(word -> word.length() > 0).
 map(String::toLowerCase).
 distinct().
 sorted().
 collect(Collectors.toList());
br.close();
System.out.println(words);

##>>   Match   <<##
Stream 有三个 match 方法,从语义上说:
allMatch:Stream 中全部元素符合传入的 predicate,返回 true
anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。

// 使用 Match
List<Person> persons = new ArrayList();
persons.add(new Person(1, "name" + 1, 10));
persons.add(new Person(2, "name" + 2, 21));
persons.add(new Person(3, "name" + 3, 34));
persons.add(new Person(4, "name" + 4, 6));
persons.add(new Person(5, "name" + 5, 55));
boolean isAllAdult = persons.stream().
 allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);
boolean isThereAnyChild = persons.stream().
 anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);

// 输出结果:
All are adult? false
Any child? true

五、总结

## 总之,Stream 的特性可以归纳为:

不是数据结构

它没有内部存储,它只是用操作管道从 source(数据结构、数组、generator function、IO channel)抓取数据。

它也绝不修改自己所封装的底层数据结构的数据。例如 Stream 的 filter 操作会产生一个不包含被过滤元素的新 Stream,而不是从 source 删除那些元素。

所有 Stream 的操作必须以 lambda 表达式为参数

不支持索引访问

你可以请求第一个元素,但无法请求第二个,第三个,或最后一个。不过请参阅下一项。

很容易生成数组或者 List

惰性化

很多 Stream 操作是向后延迟的,一直到它弄清楚了最后需要多少数据才会开始。

Intermediate 操作永远是惰性化的。

并行能力

当一个 Stream 是并行化的,就不需要再写多线程代码,所有对它的操作会自动并行进行的。

可以是无限的

集合有固定大小,Stream 则不必。limit(n) 和 findFirst() 这类的 short-circuiting 操作可以对无限的 Stream 进行运算并很快完成。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容