数据仓库(12)数据治理之数仓数据管理实践心得

这边文章聊聊自己对数据治理开发实践的一些思路,就是聊聊怎么开始去做数据治理这件事情。说起数据治理,有时候虽然看了很多文章,看了很多的介绍,了解数据治理的理论,但是实际上需要我们去搞的时候,就会踩很多的坑。这里记一下自己做数据治理的一些思路,做做笔记,也分享给需要的同学。

当然,想要做数据治理,想要学习了解,一下数据治理的范围,理论等,最好可以看看别人怎么做的,了解数据治理可以参考:数据仓库(11)什么是大数据治理,数据治理的范围是哪些

那接下来就继续说说数据治理的一些思路心得。

接到数据治理的任务?要怎么做?

  • 梳理目前数据集群,以及业务的总体情况

这个,其实没有什么好说,做事情之前,肯定是要先了解,我们要做的东西是怎么样的,评估可能会遇到的问题,这样才能进一步做出来好的数据质量方案。

  • 对数据治理进行分类

了解了我们面对的数据集群之后,就要了解对我们需要治理的方向,进行分类了,这个对我们后续的方案设计和组件的选取、改造会有很大的影响,不一样的分类,我们要解决问题的范围,是不一样的。

那要怎么分类?首先是大的方向。

  1. 主数据管理
  2. 元数据管理
  3. 数据标准
  4. 数据质量管理
  5. 数据安全管理
  6. 数据计算管理
  7. 数据存储管理

大的方向确定了,当其实还是太大了,还是需要进一步的进行切割。

像是数据质量管理,可以进一步切分为

1 唯一性校验:不存在无意义的重复数据
2 完整性校验:数据完整且连续
3 一致性校验:数据在多数据源中意义一致
4 有效性校验:这里主要指数据在分析的时间点是有效,而非过期或失效数据
5 准确性校验:数据合理、准确,并符合数据类型的标准

元数据管理,要划分为技术元数据和业务元数据等,具体的划分粒度,应该需要到具体的,可实现的,不容易混淆,以及偏于以后数据的管理和使用。毕竟这个东西后续要给开发,给数据bi等人使用的。当然,我们可能不能已下载就划分好一个最好的分类,我们应该循环迭代,做出一个更加符合实际出来。

数据管理这个,如果说技术能力,开发人力有限,那其实往往更加简单的方式更好,也便于推广,应该说一个可用的方案好过于一个全面,但用起来不方便的方案。

  • 针对某个类别的数据,进行具体设计,开发,并进一步成规范

上面,我们已经大概梳理好了我们数据治理的范围和分类,进一步的,我们就需要落地了。这个时候,我们就要进一步的针对,我们的划分的问题,提出,我们的方案,并实现他。

如果,上面说的数据质量管理中的准确性校验,这个时候,我们就面临了一个问题,怎么样的数据,符合数据合理、准确,并符合数据类型的标准这样的数据规范?我们会怎么去验证这个东西呢?正常情况下,开发人员是怎么去验证这个东西的?

所以,这个时候,我们就需要抽象出这些具体的操作,拼通过合适的方案实现他。

如果,准确性校验,开发人员一般是通过写sql,通过一定的数据规则判断的,比如数据的波动,数据值的范围等。那么我们做这个的时候,是不是就可以做这样的一个系统,可以配置sql,或者一些比较通过的逻辑,定时比对数据,得到我们的一个结果,实现这样的一个功能?当然这个肯定不是最好的方案,但是一个可用的方案好过于一个全面,但用起来不方便的方案。然后不停的迭代优化,完善。

当然,这个时候也要放过来思考我们上面的划分是不是,合理,比如数据质量管理,是不是可以使用同一个思路去做?争取事半功倍。

  • 执行规范

做好上面的事情,接下来,就是考验执行了的时候了,任何方案在,最终如果不能很好的执行,那就是事倍功半。

啰里啰唆,写了这一点点心得,逻辑可能不是很通畅,希望可以给到各个在数据治理挣扎的同学,一点思路,这个也是我的个人笔记,后续有新的想法,再更新。

需要数据仓库资料可以点击这个领取数据仓库(13)大数据数仓经典最值得阅读书籍推荐

参考资料:

  1. 数据仓库(01)什么是数据仓库,数仓有什么特点
  2. 数据仓库(02)数仓、大数据与传统数据库的区别
  3. 数据仓库(03)数仓建模之星型模型与维度建模
  4. 数据仓库(04)基于维度建模的数仓KimBall架构
  5. 数据仓库(05)数仓Kimball与Inmon架构的对比
  6. 数据仓库(06)数仓分层设计
  7. 数据仓库(07)数仓规范设计
  8. 数据仓库(08)数仓事实表和维度表技术
  9. 数据仓库(09)数仓缓慢变化维度数据的处理
  10. 数据仓库(10)数仓拉链表开发实例
  11. 数据仓库(11)什么是大数据治理,数据治理的范围是哪些
  12. 数据仓库(12)数据治理之数仓数据管理实践心得
  13. 数据仓库(13)大数据数仓经典最值得阅读书籍推荐
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容