人工智能真的那么可怕吗?

01 当今IT圈最火的莫过人工智能,什么O2O,移动互联......都变做昨日黄花,人工智能的有关报道一遍遍挑战人类的认知,deepmind的阿尔法GO完胜人类,人工智能打败德州扑克冠军团队,OpenAI人工智能1v1击败Dota2最强玩家,微软的小冰每日可以写诗上万首,IBM的沃森在医疗领域独领风骚...... 这一切看似像洪水猛兽,不可阻挡。 面对人工智能的当下,我们又给怎样....

人工智能时代

01 技术突飞猛进

深度学习最令人惊讶的地方是它相当得简单。十年前,没有人会想到通过,使用梯度下降训练的参数模型能够让我们在机器感知方面得到如此惊人的成果。现在,事实证明,你唯一需要的,是使用足够多的实例来进行梯度下降训练,并获得足够大的参数模型。

费曼曾经这么描述宇宙:“它并不复杂,只是包含了太多的东西”。

在深度学习中,一切都是向量,一切都是几何空间中的一个点。模型输入(它可以是文本,图像等等)和目标首先会被“向量化”,例如转换成某种初始输入向量空间和目标向量空间。

将这种复杂的几何变换应用到输入数据的整个过程,可以想象成是一个试图将纸球弄平的人:皱巴巴的纸球是各种各种样的输入数据。而人抚平纸球的每个动作类似于每一层的简单几何变换。而抚平纸球的手势就是整个模型的复杂变换。深度学习模型是用于解决高维度数据复杂流形的数学机器。

这就是深度学习的魔力:将意念转化为向量,转化为几何空间,然后逐步学习将一个空间映射到另一个空间的复杂几何变换。

02 局限性

局部泛化与极端泛化
深度学习模型在输入与输出之间所做的几何变换,与人类思考学习的方式之间似乎存在着本质的区别。人类在亲身体验中学习,而不是在训练中学习。除了学习过程不同之外,潜在的表现性质也存在着本质区别。
人类的能力并不只是将即时刺激映射成即时反应,就像深度网络或者昆虫那样。

当前的DNN网络和人类生物意义的神经网络还是差距甚远,神经学科学家们也无法弄清人类大脑的思考机制,所以通过机器运算和向量的变化还无法达到人类真正的思考底部。

简而言之,尽管我们在机器感知方面取得了进步,但我们离人类级别的AI还很远:我们的模型只能执行局部泛化,适应与过去数据非常接近的新情况。而人类认知能够极端泛化,迅速适应各种新的情况。

03 结论

迄今为止,深度学习唯一真正的成功之处,是在给出了大量的人为标注数据之后,使用连续的几何变换将空间X映射到空间Y。 做好这一切,是每个行业游戏制定者必备的能力,但对于人类级别的AI,仍然有很长的路要走。

本篇内容大部分摘自 Francois Chollet (keras之父)的blog。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容