观向数据:电商行业盛会双一来了!大数据在各环节运用

2017年“双十一”淘宝天猫当天日交易量就达到了1682亿,这些数据都说明了电子商务在生活中的重要性已不可忽视。

同时,根据Alexa统计及数据估算,淘宝网的日均页访问量达到了3.53亿,每天产生的数据量更是高达60TB。

经历了基于用户数量的时代,基于销量的时代,目前的电子商务市场交易已处于基于数据的时代,电子商务的竞争在很大程度上就是大数据的竞争。

由于平台所产生的巨大信息量以及其所收集到的用户信息具有真实性、确定性和对应性,电子商务具有了利用大数据的天然优势。

大数据的应用将贯穿整个电商的业务流程,成为公司的核心竞争力。随着电商企业对待大数据的挖掘、分析,已经开始了对大数据的实际应用。

Ø  客户画像

美国医药网站遵照有身的女性用户填写的受孕动静定期,给用户寄EDM(Email Direct Marketing)提醒母亲在某些特定时间点的重视、必要摄取的养分、产前的心思变动和要做好的思想筹备;同样,也包括之后的产后复原,宝宝的育养和健康,等等。

Ø  精准营销

号店通过手机平台的大数据,对其进行分析,给顾主发送个性化EDM,进行精准的电子邮件营销。若顾客曾经在1号店网站上查看过一个商品却未购买,一号店会根据可能的情况:缺货,价格不合适,商品不合适等经行分析,分别在到货、降价或引入类似商品时以电邮方式告知客户。

同时,通过挖掘客户的周期性购买习性或附近类似客户的购买周期习性,适时提醒客户。

淘宝在2012年推出了“淘宝时光机”项目,该项目通过分析用户自注册为用户以来的行动,用幽默生动的谈话模式,告知顾主淘宝的成长历史以及该用户在淘宝购物的轨迹。通过收集与该用户有相类似喜好的其他用户的行动并经过分析后,可以对特定用户的偏好和行动轨迹进行猜测,已达到精准营销的目的;并可以用特定用户喜好的方式和个性化的数据、拉近了与顾客的距离。

Google的Adsense对顾客的搜索过程和其对各网站的关注度履行数据经行发掘,并在联盟内网站上追踪用户的去处,将数据整合后经行分析,在其联盟网站上推出了和顾客潜在兴趣相匹配的广告,达到精准化营销。

Ø  信用评级

 阿里巴巴则通过在淘宝、天猫等网站积累的数据资料,通过对用户的销售终端、资金使用等数据进行追踪和收集,以了解中小企业的交易状况。从中可筛选出财务健康、讲究诚信的企业,为发放无担保贷款,解决其贷款难的问题,不仅新增了盈利模式又可以防范风险。目前,阿里巴巴已收贷300多亿元,坏账率仅为0.3%,远低于银行贷款坏账率。

Ø  广告推介

当当网、卓越网等电商企业之前通过协同算法来找到商品之间的联系,即:当购买某件商品时,会展现相关商品的推荐信息。这能够为用户查找相关商品提供方便,提升客户体验;更是利用了商品之间的互补性与相关性,增加了销量。并且,通过对平台用户的浏览痕迹进行记录分析,正对不同层次类型的用户会提供特定的商品推荐信息。

Ø  物流配送

亚马逊(Amazon)近几年推出了FDFC(ForwardDeployed Fulfillment Center)的概念,以加快对顾客配送的速度。Amazon的订单履行中心分两个层级:FC和FDFC,其中FC品种更齐全,而FDFC在物理位置上更靠近目标市场,但品种重点容纳针对目标市场的热销商品,顾客的大部分需求可以通过FDFC来满足,不能满足的长尾商品则由FC来满足。这样顾客急需的商品多数可以通过FDFC以更快捷和低成本的物流来完成。由于热销商品是随着时间和季节而改变的,故将什么商品储存在FDFC的决策是动态调整的,而此决策的依据就是对顾客需求的分析和预测。

Ø  舆情分析

 随着网络技术和电商平台的日趋完善,消费者对电商平台的口碑评价越来越关注,也使得电商平台口碑评价成为打造电商品牌的重要途径。网民对电商舆情的关注焦点主要集中在电商价格、商品质量、物流速度、售后服务等方面。

为此有电商,如京东,对所在网站的文本数据进行舆情分析,以达到更加了解客户需求,主流偏好等信息。

对于舆情分析第一步首先是通调查和深入访谈的形式,了解客户需求,确定研究方向;

第二步则对客户关注该电商平台的所有关键词进行筛选,锁定关键词;

接下来的第三步是通过中心自有监测平台采集抓取主题型关键词关注的百万级网民信息;

第四步是将行业关键词放到监测框中进行筛选,获取具有行业属性的信息;

第五步以行业特征数据分析基础,研究该群体对于某电商平台的关注特征;

第六步依据研究结果,归纳研究结论,撰写行业研究报告。

​智海创讯——云腾舆情监控系统,云腾舆情系统专注于舆情分析、监控、监测,通过全面及时搜集互联网信息,使用文本挖掘和统计分析技术,解决用户互联网危机管理、营销传播效果分析、竞品和行业情报搜集等方面需求,同时还可以帮助企业进行互联网舆情方案预警以及舆情应对方案等。

相比于线下零售,电子商务网站具备非常吩咐的客户历史数据。通过这些数据的分析,能够进一步了解客户的购物习惯、兴趣爱好和购买意愿,并可以对客户群体进行细分,从而正对不同的用户对服务经行调整和优化,进行有针对性的广告营销和推送,实现个性化服务。

观向数据是一款针对品牌商、零售商和金融的线上运营数据分析系统,可以汇集多平台、多维度数据,形成可视化报表,为企业提供行业分析、渠道监控、数据包等服务,帮助企业品牌发展提供科学化决策。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容