企业用户暴增的背后功臣

如今的互联网与四年前最大的差异在于:流量红利消失殆尽,互联网进入存量时代。

流量时代,获取流量是相对容易的。企业关注的是如何找到更优质的渠道,通过获取大量的流量来快速变现。通过新增、活跃、留存可能就能判断一个产品的好坏,因此基本的统计工具(Umeng、Talking Data 等)就能够满足需求。

存量时代****,产品结构更加多样化,每个产品都需要独一无二的指标来衡量产品是否成功。并且获取流量的成本高,对于企业而言就需要提升流量的转化效率,最大化用户价值。因此,仅考察用户整体的统计数据是不够的,还需要精细化的统计分析用户行为。为了实现这一点,数据统计工具需要支持以下两点特性:

  1. 更全面的数据模型
  2. 常用的分析功能

1. 支持更全面的数据模型

传统的页面访问模型(PV Model)只记录了访问事件或者用户,并不能建立事件和用户之间的关系,所以,对于更深入的问题无法给予清晰的解答。例如,我们想了解什么样的用户更容易留存,或者购买卫生纸和 iPhone 7 的用户有什么差别等等,这些问题是页面访问模型无法支持的。

因此,目前大多数精细化的数据统计工具,以事件模型(Event Model)代替了页面访问模型。事件模型能够记录更多的信息,简单来说,事件描述了一个用户在某个时间,在特定环境下,完成了特定的操作。

一个完整的事件包含以下关键因素

  1. Who:用户是谁;
  1. When:什么时间发生;
  2. Where:用户所处环境,包括地点、使用设备、系统版本 等等;
  3. What:描述事件的具体内容。通常,描述内容是支持自定义的,比如对于播放 音乐,我们需要了解音乐名、时长、类型等等;对于购买操作,我们可能需要了解金额、付款方式等等。

事件模型能帮助我们在后续的分析中理解事件的含义,建立事件与用户间的关系。

2. 支持常用的分析功能

事件模型仅满足了统计方面的需求,在分析过程中我们还需要一些分析功能的支持:

1)漏斗分析:
帮助分析一系列步骤的转化与流失情况。
例如,用户购买商品的完整流程可能包含以下步骤:

  1. 浏览商品
  1. 添加商品到购物车
  2. 结算购物车中的商品
  3. 选择送货地址、支付方式
  4. 点击付款
  5. 完成付款

漏斗分析能计算每一步的转化率,帮助分析哪个环节的转化率不够高,流失的用户具备什么特征等。

2)用户行为细查:
展示每个用户的具体行为,可以用来挖掘统计数据背后的用户行为。

比如,在购买流程的例子中,发现 浏览商品 - 添加商品到购物车 这一步行为的转化率较低,就可以考察流失用户的具体行为。如果发现用户在连续的浏览商品而没有购买,说明用户可能没有找到满意的商品。或者发现用户在购买页面上常点击某个功能的按钮,而不是购买按钮,说明购买按钮可能不够突出,用户容易转移注意力。

3)用户分组
根据用户的行为特征或者属性对用户进行分组对比,了解不同用户组指标间有差异的原因。一般可以将分组对比运用于漏斗分析、留存分析等场景。

用户分组的一个常用场景是:将导致不同用户组间指标差异的要素复制到目标人群中,来提升目标人群的某些指标。

举个例子:对于社交应用,如果通过分组对比,可能会发现关注熟人更多的新用户留存率高于没有关注的新用户,这样便能推测出添加熟人关系导入功能可能提升留存率。

除了上面提到的特性,以下两点也很关键:
高效,查询快捷,跑一个数据需要1分钟以上都是不能忍的;

便捷,可视化,能在页面点击之间满足90% 的分析需求。

除此之外,一款好的数据统计分析软件还支持中文事件,简化了埋点和运营的难度;企业版提供数据分析师支持,以及自动化的分析模板(比如自动输出版本更新后的数据报告)等

本文来自火辣健身产品经理汪超骏,公众号「开源思维」

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容