自定义一个mapper类需要实现如下步骤
package cn.leon.reduce_join;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
public class MapperJoinMapper extends Mapper<LongWritable, Text,Text,Text> {
private HashMap<String, String> stringHashMap = new HashMap<>();
//第一件事情:将分布式缓存的小表数据读取到本地Map集合(只需要做一次)
@Override
protected void setup(Context context) throws IOException, InterruptedException {
//1:获取分布式缓存文件列表
URI[] cacheFiles = context.getCacheFiles();
//2:获取指定的分布式缓存文件的文件系统(FileSystem)
FileSystem fileSystem = FileSystem.get(cacheFiles[0], context.getConfiguration());
//3:获取文件的输入流
FSDataInputStream inputStream = fileSystem.open(new Path(cacheFiles[0]));
//4:读取文件内容, 并将数据存入Map集合
//4.1 将字节输入流转为字符缓冲流FSDataInputStream --->BufferedReader
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
//4.2 读取小表文件内容,以行位单位,并将读取的数据存入map集合
String line = null;
while((line = bufferedReader.readLine()) != null){
String[] split = line.split(",");
stringHashMap.put(split[0], line);
}
//5:关闭流
bufferedReader.close();
fileSystem.close();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split(",");
String productId = split[2];
//k2
String productLine = stringHashMap.get(productId);
//v2
String valueLine = productLine + "\t" + value.toString();
context.write(new Text(productId),new Text(valueLine));
}
}
主类中
package cn.leon.reduce_join;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.File;
import java.net.URI;
public class ReducerMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Job job = Job.getInstance(super.getConf(),"reducer_join");
//把小表放在分布式缓存中
job.addCacheFile(new URI("hdfs://node01:8020/input/join/product.txt"));
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job,new Path("/Users/caoxiaozhu/Desktop/reduce"));
//分布式缓存mapper
job.setMapperClass(MapperJoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
Path path = new Path("/Users/caoxiaozhu/Desktop/result");
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job,path);
FileSystem fileSystem = FileSystem.get(new URI("/Users/caoxiaozhu/Desktop/result"),new Configuration());
if (fileSystem.exists(path)){
fileSystem.delete(path,true);
}
boolean bl = job.waitForCompletion(true);
return bl?0:1;
}
public static void main(String[] args) throws Exception{
Configuration configuration = new Configuration();
int run = ToolRunner.run(configuration,new ReducerMain(),args);
System.exit(run);
}
}
相当于不需要reducer,直接在mapper中合并k2 v2即可。