2018-07-24

论文笔记之Learning Convolutional Neural Networks for Graphs - CSDN博客
https://blog.csdn.net/bvl10101111/article/details/53484620

智能立方
https://mp.weixin.qq.com/s/a8xW33fff7oQGOMNJc99GA

[1807.08146] Accurate Energy-Efficient Power Control for Uplink NOMA Systems under Delay Constraint
https://arxiv.org/abs/1807.08146

[1807.08108] Simultaneous Adversarial Training - Learn from Others Mistakes
https://arxiv.org/abs/1807.08108

[1807.07984] Attention Models in Graphs: A Survey
https://arxiv.org/abs/1807.07984
Graph-structured data arise naturally in many different application domains. By representing data as graphs, we can capture entities (i.e., nodes) as well as their relationships (i.e., edges) with each other. Many useful insights can be derived from graph-structured data as demonstrated by an ever-growing body of work focused on graph mining. However, in the real-world, graphs can be both large - with many complex patterns - and noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to incorporate "attention" into graph mining solutions. An attention mechanism allows a method to focus on task-relevant parts of the graph, helping it to make better decisions. In this work, we conduct a comprehensive and focused survey of the literature on the emerging field of graph attention models. We introduce three intuitive taxonomies to group existing work. These are based on problem setting (type of input and output), the type of attention mechanism used, and the task (e.g., graph classification, link prediction, etc.). We motivate our taxonomies through detailed examples and use each to survey competing approaches from a unique standpoint. Finally, we highlight several challenges in the area and discuss promising directions for future work.

[1807.08372] Knowledge-based Transfer Learning Explanation
https://arxiv.org/abs/1807.08372

[1807.08596] Recent Advances in Convolutional Neural Network Acceleration
https://arxiv.org/abs/1807.08596

[1807.08725] Scalable Tensor Completion with Nonconvex Regularization
https://arxiv.org/abs/1807.08725

[1807.08058] Learning Heuristics for Automated Reasoning through Deep Reinforcement Learning
https://arxiv.org/abs/1807.08058

[1807.08237] Learning Deep Hidden Nonlinear Dynamics from Aggregate Data
https://arxiv.org/abs/1807.08237

[1807.07963] Deep Transfer Learning for Cross-domain Activity Recognition
https://arxiv.org/abs/1807.07963

[1807.07987] Deep Learning
https://arxiv.org/abs/1807.07987

[1807.08582] Person Search by Multi-Scale Matching
https://arxiv.org/abs/1807.08582

[1807.08526] Improving Deep Models of Person Re-identification for Cross-Dataset Usage
https://arxiv.org/abs/1807.08526

[1807.08479] Domain Generalization via Conditional Invariant Representation
https://arxiv.org/abs/1807.08479

[1807.08291] Correlation Net : spatio temporal multimodal deep learning
https://arxiv.org/abs/1807.08291

[1807.08725] Scalable Tensor Completion with Nonconvex Regularization
https://arxiv.org/abs/1807.08725

[1807.08446] Minimizing Sum of Non-Convex but Piecewise log-Lipschitz Functions using Coresets
https://arxiv.org/abs/1807.08446

[1807.08409] Subsampling MCMC - A review for the survey statistician
https://arxiv.org/abs/1807.08409

[1807.08237] Learning Deep Hidden Nonlinear Dynamics from Aggregate Data
https://arxiv.org/abs/1807.08237

[1807.08207] Predicting purchasing intent: Automatic Feature Learning using Recurrent Neural Networks
https://arxiv.org/abs/1807.08207

[1807.08169] Recent Advances in Deep Learning: An Overview
https://arxiv.org/abs/1807.08169

论文笔记之Learning Convolutional Neural Networks for Graphs - CSDN博客
https://blog.csdn.net/bvl10101111/article/details/53484620

智能立方
https://mp.weixin.qq.com/s/a8xW33fff7oQGOMNJc99GA

[1807.07868] The Deep Kernelized Autoencoder
https://arxiv.org/abs/1807.07868

[1807.07645] Distributed approximation algorithms for maximum matching in graphs and hypergraphs
https://arxiv.org/abs/1807.07645

[1807.07640] Coloring in Graph Streams
https://arxiv.org/abs/1807.07640

[1807.07619] Generalized Metric Repair on Graphs
https://arxiv.org/abs/1807.07619

[1807.07612] Adaptive Variational Particle Filtering in Non-stationary Environments
https://arxiv.org/abs/1807.07612

[1807.07868] The Deep Kernelized Autoencoder
https://arxiv.org/abs/1807.07868

[1807.07789] Escaping the Curse of Dimensionality in Similarity Learning: Efficient Frank-Wolfe Algorithm and Generalization Bounds
https://arxiv.org/abs/1807.07789

[1807.07627] Rapid Time Series Prediction with a Hardware-Based Reservoir Computer
https://arxiv.org/abs/1807.07627

[1807.07612] Adaptive Variational Particle Filtering in Non-stationary Environments
https://arxiv.org/abs/1807.07612

[1807.07801] Finding Structure in Dynamic Networks
https://arxiv.org/abs/1807.07801

[1807.08046] A Fast, Principled Working Set Algorithm for Exploiting Piecewise Linear Structure in Convex Problems
https://arxiv.org/abs/1807.08046

By reducing optimization to a sequence of smaller subproblems, working set algorithms achieve fast convergence times for many machine learning problems. Despite such performance, working set implementations often resort to heuristics to determine subproblem size, makeup, and stopping criteria. We propose BlitzWS, a working set algorithm with useful theoretical guarantees. Our theory relates subproblem size and stopping criteria to the amount of progress during each iteration. This result motivates strategies for optimizing algorithmic parameters and discarding irrelevant components as BlitzWS progresses toward a solution. BlitzWS applies to many convex problems, including training L1-regularized models and support vector machines. We showcase this versatility with empirical comparisons, which demonstrate BlitzWS is indeed a fast algorithm.

[1807.08140] On the Analysis of Trajectories of Gradient Descent in the Optimization of Deep Neural Networks
https://arxiv.org/abs/1807.08140

Theoretical analysis of the error landscape of deep neural networks has garnered significant interest in recent years. In this work, we theoretically study the importance of noise in the trajectories of gradient descent towards optimal solutions in multi-layer neural networks. We show that adding noise (in different ways) to a neural network while training increases the rank of the product of weight matrices of a multi-layer linear neural network. We thus study how adding noise can assist reaching a global optimum when the product matrix is full-rank (under certain conditions). We establish theoretical foundations between the noise induced into the neural network - either to the gradient, to the architecture, or to the input/output to a neural network - and the rank of product of weight matrices. We corroborate our theoretical findings with empirical results.

[1807.07801] Finding Structure in Dynamic Networks
https://arxiv.org/abs/1807.07801

This document is the first part of the author's habilitation thesis (HDR), defended on June 4, 2018 at the University of Bordeaux. Given the nature of this document, the contributions that involve the author have been emphasized; however, these four chapters were specifically written for distribution to a larger audience. We hope they can serve as a broad introduction to the domain of highly dynamic networks, with a focus on temporal graph concepts and their interaction with distributed computing.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容

  • 瘦脸针即A型肉毒素针剂,首要作用于肌肉组织,因常用解决咬肌肥大,被称为瘦脸针。瘦脸针专业名称为肉毒素,是一种生物制...
    晴海碧空阅读 833评论 0 1
  • 于千万人之中,遇见你要遇见的人,于千万年中,时间无涯的荒野里,没有早一步,也没有迟一步,只是恰好碰到,并且因为懂...
    依之梦盈阅读 335评论 4 11
  • 在前一篇文章中我制定了用户画像的计划,第一部分就是数据建模。以“一面APP”为例。 一、一面产品介绍 为了更好地理...
    小怪聊职场阅读 3,517评论 2 13
  • 最近这电视剧很火,看了一集便刹不住了。作为影视剧,不能说多好看,只能说这个题材够新鲜,大呼过瘾不至于,有些部分确实...
    心甲阅读 232评论 1 1