[TOC]
1. Java并发编程基础
1.1 什么是线程?
现代操作系统调度的最小单元;
一个进程可以创建多个线程,每个线程拥有自己的计数器、堆栈、局部变量等属性,同时可以访问共享的内存变量;
CPU在线程之前高速切换,使之有同时执行的感觉。
1.2 为什么使用多线程?
- 更多的处理器核心;
- 更快的响应时间
- 更好地编程模型
1.3 线程的优先级
1-10个级别,默认是5;
注意:程序的正确性不能依赖线程的优先级高低。
1.4 线程的状态
- NEW;
- RUNNABLE;
- BLOCKED;
- WAITING;
- TIME_WAITING;
- TERMINATED;
1.5 Daemon线程
一种支持型线程。用于程序中后台调度及支持性工作。
注意:当一个Java虚拟机中不存在非Daemon线程时,Java虚拟机将会退出。
可以通过Thread.setDaemon(true)将线程设置为Daemon线程
注意:在构建Daemon线程时,不能依靠finall块中的内容来确保执行关闭或清理资源的逻辑
1.6 启动和终止线程
- 构造线程:需要提供:线程组、优先级、是否是Daemon线程等信息
- 启动线程:start();其含义是:当前线程(即parent线程)同步告知Java虚拟机,只要线程规划器空闲,立即启动该线程
- 理解中断:线程的一个标志位属性,它表示一个运行中的线程是否被其他线程进行了中断。(见Interrupted.java类)
- 如何安全的终止线程: 见Shutdown.java
/**
* Shutdown.java
*
* 创建了一个线程CountThread,它不断地进行变量累加,而主线程尝试对其进行中断操作和停止操作。
*/
public class Shutdown {
public static void main(String[] args) throws InterruptedException {
Runner one= new Runner();
Thread countThread = new Thread(one,"countThread");
countThread.start();
//睡眠1秒,main线程对CountThread进行中断,使CountThread能够感知中断而结束
TimeUnit.SECONDS.sleep(1);
countThread.interrupt();
Runner two= new Runner();
countThread = new Thread(two,"countThread");
countThread.start();
//睡眠1秒,main线程对two进行取消,使CountThread能够感知on为false而结束
TimeUnit.SECONDS.sleep(1);
two.cancel();
}
private static class Runner implements Runnable{
private long i;
private volatile boolean on = true;
@Override
public void run() {
while (on && !Thread.currentThread().isInterrupted()){
i ++ ;
}
System.out.println("Count i="+ i);
}
public void cancel(){
on = false;
}
}
}
1.7 线程间通信
volatile关键字:告知程序任何对该变量的访问均需要从共享内存中获取,而对它的改变必须同步刷新回共享内存,以保证可见性。
注意:过多的使用它会降低程序的效率。
synchronized关键字:确保多个线程在同一时刻,只能有一个线程处于方法或者同步块中,保证了线程对变量访问的可见性和排他性。
对象、对象的监视器、同步队列、执行线程之间的关系:
线程想要对Object(Object由Synchronized保护)进行访问
-> 首先需要获得Object的监视器
-> 获取监视器成功,则可访问
-> 获取监视器失败,则该线程进入同步队列,状态变为阻塞,直到拥有锁的线程释放了锁,会唤醒同步队列中的线程,再次尝试进行对监视器的获取操作
1.8 等待/通知机制
- notify()
- notifyAll()
- wait()
- wait(long)
- wait(long,int)
见WaitNotify.java
/**
* 两个线程wait线程由notify线程唤醒
*/
public class WaitNotify {
static boolean flag = true;
static Object lock = new Object();
public static void main(String[] args) throws InterruptedException {
Thread waitThread = new Thread(new Wait(),"waitThread");
waitThread.start();
TimeUnit.SECONDS.sleep(1);
Thread notifyThread = new Thread(new Notify(),"notifyThread");
notifyThread.start();
}
static class Wait implements Runnable{
@Override
public void run() {
synchronized(lock){
while(flag){
try{
System.out.println(Thread.currentThread() +"flag is true. wait@ "+ new SimpleDateFormat("HH:mm:ss").format(new Date()));
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread() +"flag is false. running@ "+ new SimpleDateFormat("HH:mm:ss").format(new Date()));
}
}
}
static class Notify implements Runnable{
@Override
public void run() {
synchronized(lock){
System.out.println(Thread.currentThread() +"hold lock. notify@ "+ new SimpleDateFormat("HH:mm:ss").format(new Date()));
lock.notifyAll();
flag = false;
SleepUtils.second(5);
}
synchronized(lock){
System.out.println(Thread.currentThread() +"hold lock again. sleep@ "+ new SimpleDateFormat("HH:mm:ss").format(new Date()));
SleepUtils.second(5);
}
}
}
}
输出:
Connected to the target VM, address: '127.0.0.1:57763', transport: 'socket'
Thread[waitThread,5,main]flag is true. wait@ 09:24:43
Thread[notifyThread,5,main]hold lock. notify@ 09:24:44
Thread[notifyThread,5,main]hold lock again. sleep@ 09:24:49
Disconnected from the target VM, address: '127.0.0.1:57763', transport: 'socket'
Thread[waitThread,5,main]flag is false. running@ 09:24:54
注意点:
- 先对调用对象枷锁,再调用notify()、notifyAll()、wait()
- wait()方法使线程状态由Running变为Waiting,同时线程被放置到等待队列
- notify()、notifyAll()被调用后,等待线程不会立即从wait()返回,需要有锁的那个线程先释放锁以后,才有机会从wait()返回
- notify()、notifyAll()的操作是将等待队列中的线程放置到同步队列中,同时被移动的线程状态由Waiting转变为Blocked(不同的是,前者只放一个,后者放置所有线程)。
- wait()能够返回,前提是获得了锁。
1.9 经典范式:生产者/消费者模式
等待方遵循如下原则:
- 获取对象锁
- 如果条件不满足,进行wait()操作,被通知后仍要检查条件。
- 条件满足则执行对应的条件
通知方遵循如下原则: - 获取对象锁
- 改变条件
- 通知所有等待在对象上的线程
1.10 管道输入/输出流
主要用于线程之间的数据传输,而传输的媒介为内存
4种具体实现:
- PipedOutputStream
- PipedInputStream
- PipedReader
- PipedWriter
见Piped.java
/**
* PipedWriter和PipedReader相连接,主线程读入控制台输入的字符,传给Print线程,打印到控制台
*/
public class Piped {
public static void main(String[] args) {
PipedWriter out = new PipedWriter();
PipedReader in = new PipedReader();
try {
out.connect(in);
} catch (IOException e) {
e.printStackTrace();
}
Thread printThread = new Thread(new Print(in),"PrintThread");
printThread.start();
int receive = 0;
try {
while((receive = System.in.read())!= 1){
out.write(receive);
}
} catch (IOException e) {
e.printStackTrace();
}finally{
try {
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
static class Print implements Runnable{
private PipedReader in;
public Print(PipedReader in){
this.in= in;
}
@Override
public void run() {
int receive = 0;
try {
while((receive = in.read()) != -1 ){
System.out.println((char) receive);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
1.11 Thread.join()的使用
当线程A执行了thread.join()语句,其含义是:当前线程A等待thread线程终止之后才从thread.join()返回。
见Join.java
/**
* Join.java
* 每个线程调用前一个线程的join()方法,意味着:从主线程结束->线程1结束-> ... -> 线程10结束
*/
public class Join {
public static void main(String[] args) throws InterruptedException {
Thread previous = Thread.currentThread();
for(int i = 0; i < 10; i ++){
Thread thread = new Thread(new Domino(previous),String.valueOf(i));
thread.start();
previous = thread;
}
TimeUnit.SECONDS.sleep(5);
System.out.println(Thread.currentThread().getName() + " terminate.");
}
static class Domino implements Runnable{
private Thread thread;
public Domino(Thread thread){
this.thread = thread;
}
@Override
public void run() {
try {
this.thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " terminate.");
}
}
}
输出:
main terminate.
0 terminate.
1 terminate.
2 terminate.
3 terminate.
4 terminate.
5 terminate.
6 terminate.
7 terminate.
8 terminate.
9 terminate.
join()方法的逻辑结构和等待/通知经典范式一致,即加锁、循环和处理逻辑3个步骤
1.12 ThreadLocal的使用
ThreadLocal,即线程变量。键值存储结构。
一个线程可以根据一个ThreadLocal对象查询到绑定在这个线程上的一个值。
见Profiler.java
/**
* Profiler.java
*
*相当于每个线程自己会有自己的本地变量,虽然共享了TIME_THREADLOCAL变量,但在get的时候只会获取自己线程的本地变量值
*通过匿名内部类来构建一个ThreadLocal子类,重写方法initialValue,以便在get和set方法第一次调用时,进行初始化
*/
public class Profiler {
private static final ThreadLocal<Long> TIME_THREADLOCAL = new ThreadLocal<Long>(){
protected Long initialValue(){
return System.currentTimeMillis();
}
};
public static final void begin(){
TIME_THREADLOCAL.set(System.currentTimeMillis());
}
public static final long end(){
return System.currentTimeMillis() - TIME_THREADLOCAL.get();
}
public static void main(String[] args) throws InterruptedException {
Profiler.begin();
TimeUnit.SECONDS.sleep(1);
System.out.println("Cost:" + Profiler.end() + " mills");
}
}
1.13 线程实例
等待超时模式:
- 使用场景:调用一个方法时等待一段时间,能在时间内返回,则立即返回,超时,返回默认结果。
- 基本点:等待持续时间 REMAINING = T 、超时时间 FUTURE = now + T
见TimeoutPattern.java
/**
* 一个经典的等待超时模式
*/
public class TimeoutPattern {
public synchronized Object get(long mills) throws InterruptedException {
Object result = null;
long future = System.currentTimeMillis() + mills;
long remaining = mills;
while((result == null)&& remaining > 0 ){
wait(remaining);
remaining = future - System.currentTimeMillis();
}
return result;
}
}
一个简单的数据库连接池实例:
重点是:使用等待超时模式,在获取连接的过程,如果有连接则直接返回;如果没有,则wait(mills),在其他线程释放连接时被唤醒,如果超时未被唤醒,返回null。
public class ConnectionPool {
private LinkedList<Connection> pool = new LinkedList<Connection>();
public ConnectionPool(int initialSize){
if(initialSize > 0 ){
for(int i = 0; i < initialSize ; i ++){
pool.add(ConnectionDriver.createConnection()); //使用动态代理创建一个连接
}
}
}
public void releaseConnection(Connection connection){
if(connection != null){
synchronized (pool){
pool.add(connection);
pool.notifyAll();
}
}
}
public Connection fetchConnection(long mills) throws InterruptedException {
synchronized (pool){
//完全超时
if(mills < 0 ){
while (pool.isEmpty()){
pool.wait();
}
return pool.removeFirst();
}else {
long future = System.currentTimeMillis() + mills;
long remaining = mills;
while(pool.isEmpty() && remaining > 0 ){
pool.wait(remaining);
remaining = future - System.currentTimeMillis();
}
Connection result = null;
if(!pool.isEmpty()){
result = pool.removeFirst();
}
return result;
}
}
}
}
public class ConnectionDriver {
static class ConnectionHandler implements InvocationHandler{
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
if(method.getName().equals("commit")){
TimeUnit.MILLISECONDS.sleep(100);
}
return null;
}
}
public static final Connection createConnection(){
return (Connection) Proxy.newProxyInstance(ConnectionDriver.class.getClassLoader(),new Class<?>[]{Connection.class},new ConnectionHandler());
}
}
public class ConnectionPoolTest {
static ConnectionPool pool = new ConnectionPool(10);
static CountDownLatch start = new CountDownLatch(1);
static CountDownLatch end;
public static void main(String[] args) throws InterruptedException {
int threadCount = 1000;
end = new CountDownLatch(threadCount);
int count = 1000;
AtomicInteger got = new AtomicInteger();
AtomicInteger notGot = new AtomicInteger();
for(int i = 0; i < threadCount; i ++){
Thread thread = new Thread(new ConnectionRunner(count,got,notGot),"ConnectionRunnerThread");
thread.start();
}
start.countDown();
end.await();
System.out.println("total invoke: " + (threadCount * count));
System.out.println("got connection: " + got);
System.out.println("not got connectio " + notGot);
}
static class ConnectionRunner implements Runnable{
int count;
AtomicInteger got;
AtomicInteger notgot;
public ConnectionRunner(int count,AtomicInteger got,AtomicInteger notgot){
this.count = count;
this.got = got;
this.notgot = notgot;
}
@Override
public void run() {
try {
start.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
while (count > 0 ){
try {
Connection connection = pool.fetchConnection(1000);
if(connection!=null){
try {
connection.createStatement();
connection.commit();
} catch (SQLException e) {
e.printStackTrace();
}finally {
pool.releaseConnection(connection);
got.incrementAndGet();
}
}else{
notgot.incrementAndGet();
}
} catch (InterruptedException e) {
}finally {
count --;
}
}
end.countDown();
}
}
}
线程池技术:
本质:一个线程安全的任务队列,它连接了工作者线程和客户端线程。工作者线程中,不断地在任务队列中获取任务,没有任务就wait,直到在任务队列中新增一个任务后notify唤醒。
public interface ThreadPool<Job extends Runnable> {
void execute(Job job);
void shutdown();
void addWorkers(int num);
void removeWorker(int num);
int getJobSize();
}
public class DefaultThreadPool<Job extends Runnable> implements ThreadPool<Job> {
private static final int MAX_WORKER_NUMBERS = 10;
private static final int DEFAULT_WORKER_NUMBERS = 5;
private static final int MIN_WORKER_NUMBERS = 1;
//工作列表,将会向里面插入工作
private final LinkedList<Job> jobs = new LinkedList<Job>();
//工作者列表
private final List<Worker> workers = Collections.synchronizedList(new ArrayList<Worker>());
//工作者线程数量
private int workerNum = DEFAULT_WORKER_NUMBERS;
//线程编号
private AtomicLong threadNum = new AtomicLong();
public DefaultThreadPool(){
initializeWorker(DEFAULT_WORKER_NUMBERS);
}
public DefaultThreadPool(int num){
workerNum = num > MAX_WORKER_NUMBERS ? MAX_WORKER_NUMBERS : num < MIN_WORKER_NUMBERS ? MIN_WORKER_NUMBERS : num;
initializeWorker(workerNum);
}
//初始化线程工作者
private void initializeWorker(int num){
for(int i = 0 ; i < num; i ++ ){
Worker worker = new Worker();
workers.add(worker);
Thread thread = new Thread(worker, "ThreadPool-Worker-"+ threadNum.incrementAndGet());
thread.start();
}
}
@Override
public void execute(Job job) {
if(job != null){
synchronized (jobs){
jobs.addLast(job);
jobs.notifyAll();
}
}
}
@Override
public void shutdown() {
for(Worker worker : workers){
worker.shutdown();
}
}
@Override
public void addWorkers(int num) {
synchronized (jobs){
if(num + this.workerNum > MAX_WORKER_NUMBERS){
num = MAX_WORKER_NUMBERS;
}
initializeWorker(num);
this.workerNum += num;
}
}
@Override
public void removeWorker(int num) {
synchronized (jobs){
if(num >= this.workerNum){
throw new IllegalArgumentException("beyond worknum");
}
//按照给定的数量停止Worker
int count = 0;
while(count < num){
Worker worker = workers.get(count);
if(workers.remove(worker)){
worker.shutdown();
count ++;
}
}
this.workerNum -= count;
}
}
@Override
public int getJobSize() {
return jobs.size();
}
class Worker implements Runnable{
//是否工作
private volatile boolean running = true;
@Override
public void run() {
while (running){
Job job = null;
synchronized (jobs){
//如果工作者列表是空的,那么久wait
while(jobs.isEmpty()){
try {
jobs.wait();
} catch (InterruptedException e) {
//感知到外部对WorkerThread的中断操作,返回
e.printStackTrace();
return ;
}
}
job = jobs.removeFirst();
}
if(job != null){
try{
job.run();
}catch (Exception e){
//此处暂时忽略Job执行中的Exception
}
}
}
}
public void shutdown(){
running =false;
}
}
}