文章学习19“Generative Adversarial Networks for Noise Reduction in Low-Dose CT”

本文是IEEE TRANSACTIONS ON MEDICAL IMAGING 17年的作品,作者是荷兰的一个医学中心的人用gan来做LDCT的去燥,文章的亮点是体素级的设计,网络总结构如下图所示:

生成器是输入低剂量的CT图像,然后经过7个连续的卷积层输出图像中的噪声,然后用输入的低剂量图像减去噪声得到模拟高剂量图像。和普通的网络的不同是作者没有将CT作为图像处理,而是转化为体素值(HU)进行处理,除了最后一层其余的激活函数都是LRELu,权重初始化为(0,0.001)的正态分布。生成器部分的loss为:

上式第一部分是生成的虚拟高剂量与真实的LDCT之间的l2范数损失,第二部分是辨别器的分类值和是高剂量的二值交叉熵损失。然后根据两个参数,生成器的优化方式会有三种,如下图:

用以对比GAN的结构是否有意义。

判别器部分输入生成器的输出和HDCT,经过卷积层,LReLu和sigmod之后输出判别结果:是(1)或者不是(0)。此部分的loss是:

两个二值交叉熵损失用于提升判断能力,这个交叉损失感觉会很有效。

数据集有两部分,SAGAN里也用到的Phantom CT Scans 和28名患者的心脏CT扫描图,都是有高低两种剂量标准的图像,衡量标准还是PSNR值,4095是HU值的最大相差范围:

作者在12G的英伟达GPU上训练,用Adam优化器,在theano上写的。

分别在三个生成器去燥的结果分别如下图所示:



可以看出交叉熵损失存在的G更拟合真实的高剂量图像。在Phantom CT Scans数据集上的结果如下:

上图中a是FBP的结果,b、c、d分别是使用G1(只有第一项)、G2(只有第二项)、G3(两项损失都有)生成器的结果,e是迭代重建的结果,f是常规剂量对比图。

上图是心脏数据集里4中ct图像下HU值的中值和偏差,这个统计应该是来显示去燥效果的。作者中文中并没有提到和其他试验方法的对比结果,但是三个生成器和体素级损失还是很有创意的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,042评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,996评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,674评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,340评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,404评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,749评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,902评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,662评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,110评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,577评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,258评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,848评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,726评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,952评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,271评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,452评论 2 348

推荐阅读更多精彩内容

  • 论文链接:SAGAN 代码链接:SAGAN 这篇文章是我在GitHub发现的低剂量CT向高剂量CT转化的项目的文章...
    Carrie_Hou阅读 2,374评论 0 2
  • 题目:使用马尔可夫生成对抗网络进行预先计算的实时纹理合成 文章地址:《Precomputed Real-Time ...
    zhwhong阅读 4,578评论 0 4
  • 1. 关于诊断X线机准直器的作用,错误的是()。 (6.0 分) A. 显示照射野 B. 显示中心线 C. 屏蔽多...
    我们村我最帅阅读 10,329评论 0 5
  • 从很多年前开始,过年除了看春晚、走亲戚之外,又多了一个项目,放火! 去年,意外找到了一条被废弃的小河,河中竟是枯死...
    Yizuifangxiu阅读 295评论 0 0
  • 第9天小组作业练习 1、100件事情列表(要详细!具体!可查!) 比如什么拖延不起床、拖延不睡觉,这些都不是! 2...
    李娟AINI阅读 109评论 0 0