四、ELMO、GPT、BERT

1、ELMO

ELMO由一层input层 和 两层双向LSTM 组合而成的,input层可看为embedding层,不过ELMO是通过字符卷积来得到embedding的,不是矩阵相乘;用两个单向LSTM替代一个双向LSTM。


ELMO最重要的一点是,它解决了一词多义的问题。

以word2vector来说,word与vector是一一对应的,输入句子,然后输出句子中每个字对应vector,可以看成查表的过程。

如:输入 画画 ,word2vector就会输出两个一样的vector,但是第一个画是动词、第二个画是名词,他们的vector应该是不一样的,但word2vector并不能区分。即使在训练过程中对embedding矩阵进行更新,它依旧还是一一对应的关系。

向ELMO输入 画画 ,输出的两个向量是经过2层LSTM后的结果,它们是不同的。这是ELMO根据输入句子的语境得到的结果。

ELMo算法过程为:
  1. 先在大语料上以language model为目标训练出bidirectional LSTM模型;
  2. 然后利用LSTM产生词语的表征;

ELMo模型包含多layer的bidirectional LSTM,可以这么理解:
高层的LSTM的状态可以捕捉词语意义中和语境相关的那方面的特征(比如可以用来做语义的消歧),而低 层的LSTM可以找到语法方面的特征(比如可以做词性标注)。

但是,用双向的模型结构去训练语言模型会导致“看到自己”或“看到答案”的问题。后来的预训练语言模型也都在避免或解决这个问题,解决的程度也影响着模型效果。

ELMO选择使用两个单向LSTM代替一个双向LSTM;

GPT选择通过mask得分矩阵避免当前字看到之后所要预测的字,所以GPT是只有正向的,缺失了反向信息;

BERT选择将所要预测的字用[MASK]字符代替,无论你是正向的还是反向的,你都不知道[MASK]这个字符原来的字是什么,只有结合[MASK]左右两边的词语信息来预测。这就达到了用双向模型训练的目的,但也引入了 预训练-微调 不一致的问题。

2、GPT

GPT是一种半监督学习方法,它致力于用大量无标注数据让模型学习“常识”,以缓解标注信息不足的问题。其具体方法是在针对有标签数据训练Fine-tune之前,用无标签数据预训练模型Pretrain,并保证两种训练具有同样的网络结构。

GPT的训练分为两个阶段;

  • 1.无监督预训练语言模型;
  • 2.各个任务的微调。

模型结构图:


3、BERT

BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的 Encoder。模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两 种方法分别捕捉词语和句子级别的representation。

BERT与GPT非常的相似,都是基于Transformer的二阶段训练模型,都分为Pre-Training与Fine-Tuning两个阶段,都在Pre-Training阶段无监督地训练出一个可通用的Transformer模型,然后在Fine-Tuning阶段对这个模型中的参数进行微调,使之能够适应不同的下游任务。

虽然BERT与GPT看上去非常的相似,但是它们的训练目标和模型结构和使用上还是有着些许的不同:

  • GPT采用的是单向的Transformer,而BERT采用的是双向的Transformer,也就是不用进行Mask操作;
  • 使用的结构的不同,直接导致了它们在Pre-Training阶段训练目标的不同;

模型结构如下:


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345