本内容为【科研私家菜】R可视化之美之科研绘图系列课程
快来收藏关注【科研私家菜】
01 词云图
词云图( word cloud chart)是通过使每个字的大小与其出现频率成正比,显示不同单词在给定文本中的出现频率,然后将所有的字词排在一起,形成云状图案,也可以任何格式排列:水平线、垂直列或其他形状,如图3-9-1所示。其也可用于显示获分配元数据的单词。在词云图上使用颜色通常都是毫无意义的,主要是为了美观,但我们可以用颜色对单词进行分类或显示另一个数据变量。词云图通常用于网站或博客上,以描述关键字或标签使用,也可用来比较两个不同的文本。
library(tm)
library(wordcloud)
Paper1<-paste(scan("Paper1.txt", what = character(0),sep = ""), collapse = " ") #读入TXT 文档1
Paper2<-paste(scan("Paper2.txt", what = character(0),sep = ""), collapse = " ") #读入TXT 文档2
tmpText<- data.frame(c(Paper1, Paper2),row.names=c("Text1","Text2"))
df_title <- data.frame(doc_id=row.names(tmpText),
text=tmpText$c.Paper1..Paper2.)
ds <- DataframeSource(df_title)
#创建一个数据框格式的数据源,首列是文档id(doc_id),第二列是文档内容
corp <- VCorpus(ds)
#加载文档集中的文本并生成语料库文件
corp<- tm_map(corp,removePunctuation) #清除语料库内的标点符号
corp <- tm_map(corp,PlainTextDocument) #转换为纯文本
corp <- tm_map(corp,removeNumbers) #清除数字符号
corp <- tm_map(corp, function(x){removeWords(x,stopwords())}) #过滤停止词库
term.matrix <- TermDocumentMatrix(corp)
#利用TermDocumentMatrix()函数将处理后的语料库进行断字处理,生成词频权重矩阵
term.matrix <- as.matrix(term.matrix) #频率
colnames(term.matrix) <- c("Paper1","paper2")
df<-data.frame(term.matrix)
write.csv(df,'term_matrix.csv') #导出两篇文章的频率分析结果
df<-read.csv('term_matrix.csv',header=TRUE,row.names=1)
#Colors<-colorRampPalette(rev(brewer.pal(9,'RdBu')))(length(df$Paper1>10))
wordcloud(row.names(df) , df$Paper1 , min.freq=10,col=brewer.pal(8, "Dark2"), rot.per=0.3 )
效果如下:
02 两份数据的对比
comparison.cloud(df, max.words=300, random.order=FALSE, rot.per=.15, c(4,0.4), title.size=1.4)
comparison.cloud(df,max.words=300,random.order=FALSE,colors=c("#00B2FF", "red"))
commonality.cloud(df,max.words=100,random.order=FALSE,color="#E7298A")
# comparison cloud
comparison.cloud(df, random.order=FALSE,
colors = c("#00B2FF", "red", "#FF0099", "#6600CC"),
title.size=1.5, max.words=500)
效果如下:
注意事项:
词云图虽然简单易懂,但有着一些缺点:
(1)较长的字词会更引人注意;
( 2)字母含有很多升部/降部的单词可能会更受人关注;
(3)分析精度不足,主要是为了美观。
参考资料
《R语言数据可视化之美》
关注R小盐,关注科研私家菜(溦❤工众號: SciPrivate),有问题请联系R小盐。让我们一起来学习 R可视化之美之科研绘图