温莎日记 28

Let's try to understand why MLEs are 'good':

If I get more and more data, I can uncover the truth.

Law of Large Numbers:

TT the U.S. physician: chenpengaizhongguo@126.com.

If distribution of the i.i.d. sample X_1,...,X_n is such that X_1 has a finite expectation, i.e.\vert EX_1\vert < ∞, then the sample average 

\tilde{X_n} =\frac{X_1+...+X_n}{n}  \rightarrow EX_1

converges to its expectation in probability, which means that for any arbitrarily small\varepsilon >0

P(\vert \tilde{X} -EX_1 \vert >\epsilon )\rightarrow 0 asn\rightarrow ∞.

Note. Whenever we will use the LLN below we will simply say that the average converges to its expectation and will not mention in what sense. More mathematically inclined clients are welcome to carry out these steps more rigorously, especially when we use LLN in combination with the Central Limit Theorem.

Central Limit Theorem:

If distribution of the i.i.d. sample X_1,...,X_n is such that X_1 has finite expectation and variance, i.e. \vert EX_1 \vert <∞ and \sigma ^2=Var(X)<∞, then

\sqrt{n} (\tilde{X_n} -EX_1 ) {\to d} N(0,\sigma ^2)

converges in distribution to normal distribution with zero mean and variance \sigma ^2, which means that for any interval [a,b],

P(\sqrt{n}(\tilde{X}_n - EX_1 ) \in [a,b])\rightarrow \int_{a}^{b} \frac{1}{\sqrt{2\pi } \sigma } e^{-\frac{x^2}{2\sigma ^2} } dx.

In other words, the random variable \sqrt{n} (\tilde{X}_n -EX_1 ) will behave like a random variable from normal distribution when n gets large.

We will prove that MLE satisfies usually the following two properties called consistency and asymptotic normality.

1. Consistency. We say that an estimate \hat{\theta }  is consistent if \hat{\theta } \rightarrow \theta _0 in probability as n \rightarrow  ∞, where \theta _0 is the 'true' unknown parameter of the distribution of the sample.

2. Asymptotic Normality. We say that \hat{\theta }  is asymptotically normal if 

\sqrt{n} (\hat{\theta }-\theta _0 ){\to d} N(0,\sigma _{\theta _0}^2 )

where \sigma _{\theta _0}^2 is called the asymptotic variance of the estimate \hat{\theta } . Asymptotic normality says that the estimator not only converges to the unknown parameter but also converges fast enough at rate 1/\sqrt{n} .

Consistency of MLE:

Suppose that the data X_{1:n} is generated from a distribution with unknown parameter \theta _0 and \hat{\theta }  converges to the unknown parameter \theta _0? This is not immediately obvious and we will give a sketch of why this happens.

First of all, MLE \hat{\theta }  is the maximizer of L_n(\theta )=\frac{1}{n} \sum_{i=1}^n logf(X_i|\theta )  which is a log-likelihood function normalized by \frac{1}{n} .  Notice that function L_n(\theta ) depends on data. Let us consider a function l(X|\theta )=logf(X|\theta ) and define L(\theta )=E_{\theta _0}l(X|\theta ), where E_{\theta _0} denotes the expectation with respect to the true unknown parameter \theta _0 of the sample X_{1:n}.  

If we deal with continuous distributions then L(\theta )=\int(logf(x|\theta ))f(x|\theta _0)dx.  

By law of large numbers, for any \theta L_n(\theta )\rightarrow E_{\theta _0}l(X|\theta )=L(\theta ).  Note that L(\theta ) this does not depend on the sample, it only depends on \theta . We will need the following. 

Lemma. We have that for any \theta L(\theta )\leq L(\theta _0).  Moreover, the inequality is strict, L(\theta )<L(\theta _0), unless P_{\theta _0}(f(X|\theta )=f(X|\theta _0))=1, which means that P_\theta =P_{\theta_0}.

Proof. Let us consider the difference

L(\theta )-L(\theta_0)=E_{\theta _0}(logf(X|\theta )-logf(X|\theta _0))=E_{\theta _0}log\frac{f(X|\theta )}{f(X|\theta _0)} .

Since logt\leq t-1, we can write 

E_{\theta _0}log\frac{f(X|\theta )}{f(X|\theta _0)} \leq  E_{\theta _0}(\frac{f(X|\theta )}{f(X|\theta _0)} -1)=\int(\frac{f(x|\theta )}{f(x|\theta _0)} -1)f(x|\theta _0)dx

=\int f(x|\theta)dx-\int f(x|\theta _0)dx=1-1=0.

Both integrals are equal to 1 because we are integrating the probability density function. This proves that L(\theta )-L(\theta _0) \leq 0.  The second statement of Lemma is also clear. We will use this Lemma to sketch the consistency of the MLE.

Theorem. Under some regularity conditions on the family of distributions, MLE \hat{\theta }  is consistent, i.e. \hat{\theta } \rightarrow  \theta _0 as n\rightarrow  ∞.

Proof. We have the following facts:

1) \hat{\theta }  is the maximizer of L_n(\theta ) by definition.

2) \theta _0 is the maximizer of L(\theta ) by Lemma.

3) \forall  \theta  we have L_\theta (\theta ) \rightarrow L(\theta ) by LLN.

Asymptotic normality of MLE, Fisher information.

We want to show the asymptotic normality of MLE, i.e. to show that 

\sqrt{n}(\hat{\theta } -\theta _0)  {\to d}  N(0,\sigma ^2_{MLE}) for some \sigma ^2_{MLE} and compute it. 

This asymptotic variance in some sense measures the quality of MLE. First, we need to introduce the notion called Fisher Information.

Let us recall that above we defined the function l(X|\theta )=logf(X|\theta ). To simplify the notations we will denote by l'(X|\theta )l''(X|\theta ), etc. the derivatives of l(X|\theta ) with respect to \theta

Definition. (Fisher Information) Fisher information of a random variable X with distribution P_{\theta _0} from the family \left\{ P_\theta : \theta \in \Theta  \right\}  is defined by 

I(\theta _0)=E_{\theta _0}(l'(X|\theta _0)^2\equiv E_{\theta _0}(\frac{\partial}{\partial \theta } logf(X|\theta )|_{\theta =\theta _0})^2.

Theorem. (Asymptotic normality of MLE) We have, \sqrt{n}(\hat{\theta }-\theta _0 ) \rightarrow N(0,\frac{1}{I(\theta _0)} ).

Example. The family of Bernoulli distributions B(p) has p.f. f(x|p)=p^x(1-p)^{1-x} and taking the logarithm logf(x|p)=xlogp + (1-x)log(1-p). The second derivative with respect to parameter p is 

\frac{\partial}{\partial p} logf(x|p)=\frac{x}{p}-\frac{1-x}{1-p}  \frac{\partial^2}{\partial p^2} logf(x|p)=-\frac{x}{p^2}-\frac{1-x}{(1-p)^2}

Then the Fisher information can be computed as

I(p)=-E\frac{\partial^2}{\partial p^2} logf(X|p)=\frac{EX}{p^2} +\frac{1-EX}{(1-p)^2} =\frac{p}{p^2} +\frac{1-p}{(1-p)^2} =\frac{1}{p(1-p)} .

The MLE of p is \hat{p}=\tilde{X}   and the asymptotic normality result states that 

\sqrt{n}(\hat{p} -p_0) \rightarrow N(0,p_0(1-p_0)) which, of course, also follows directly from the CLT.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容