Python寻找两个有序数组的中位数
审题:
- 找出意味着这是一个查找算法题
- 算法复杂度log级别,就是提示你是二分查找
- 二分查找实现一般为递归
(1)递归包括递归体
(2)终止条件
思路:
定理:
- 有序数组中有一半的元素小于等于数组的中位数,有一半的元素大于等于中位数(如果数组中元素个数是奇数,那么这里的一半并不是严格意义的1/2)
- 如果我们去掉其中一个数组比中位数小的k个数,再去掉另一个数组中比中位数大的k个数,得到的合并子数组的中位数和原来的中位数相同。
eg:[1,2,3],[1,2,3] => [1,1,2,2,3,3]
根据定理去除元素[2,3],[1,2] => [1,2,2,3]中位数没变。我用了特殊的例子解释,你可以自行换一个试一试。如果两个的数组长度不一样的时候,不能去掉各自的一半,要去掉相同的个数,下面会细说
解题思路:
假设两个数组的中位数分别是a[m1],b[m2]
- if a[m1] == b[m2] ,那么刚好有一半的元素小于a[m1],那么a[m1]就是要找的中位数。参考上面的列子
- if a[m1] < b[m2],根据定理1可知,这个中位数只可能出现在a[n1/2 ~ n1-1]或者b[0 ~ n2/2].也就是说合并这两个数组的中位数和原来的数组合并的数组的中位数是一样的。 根据定理2可知:
1.数组长度一样的时候,去除掉一半是合理的。
2.数组长度不一样,这么做中位数可能发生变化。解决方案就是去除掉相同个数的元素。why?假设n1 < n2, 两个数组就去掉n1/2个元素。那就不在是上面的范围(a[n1/2 ~ n1-1]或者b[0 ~ n2/2]),而是a[n1/2 ~ n1-1]或者b[0 ~ (-n1/2+n2-1)].
结论就是:只能删除a的n1/2(向下取整) - if a[m1] > b[m2],和上面分析类似,中位数只能出现在a的前半段或者b的后半段。也就是说a[0 ~ n1/2]和b[n1/2 ~ n2-1]的中位数和原来的中位数相同。
参考:LeetCode参考答案
class Solution:
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
m, n = len(nums1), len(nums2)
if m > n:
nums1, nums2, m, n = nums2, nums1, n, m
if n == 0:
raise ValueError
imin, imax, half_len = 0, m, (m + n + 1) // 2
while imin <= imax:
i = (imin + imax) // 2
j = half_len - i
if i < m and nums2[j-1] > nums1[i]:
# i is too small, must increase it
imin = i + 1
elif i > 0 and nums1[i-1] > nums2[j]:
# i is too big, must decrease it
imax = i - 1
else:
# i is perfect
if i == 0: max_of_left = nums2[j-1]
elif j == 0: max_of_left = nums1[i-1]
else: max_of_left = max(nums1[i-1], nums2[j-1])
if (m + n) % 2 == 1:
return max_of_left
if i == m: min_of_right = nums2[j]
elif j == n: min_of_right = nums1[i]
else: min_of_right = min(nums1[i], nums2[j])
return (max_of_left + min_of_right) / 2.0