线程池,常见的四种线程池和区别

简述

  为了彻底了解线程池的时候,我们需要弄清楚线程池创建的几个参数

  • corepollsize : 核心池的大小,默认情况下,在创建线程池后,每当有新的任务来的时候,如果此时线程池中的线程数小于核心线程数,就会去创建一个线程执行(就算有空线程也不复用),当创建的线程数达到核心线程数之后,再有任务进来就会放入任务缓存队列中。当任务缓存队列也满了的时候,就会继续创建线程,知道达到最大线程数。如果达到最大线程数之后再有任务过来,那么就会采取拒绝服务策略。
  • Maximumpoolsize : 线程池中最多可以创建的线程数
  • keeplivetime : 线程空闲状态时,最多保持多久的时间会终止。默认情况下,当线程池中的线程数大于corepollsize 时,才会起作用 ,直到线程数不大于 corepollsize 。
  • workQuque: 阻塞队列,用来存放等待的任务
  • rejectedExecutionHandler :任务拒绝处理器(这个注意一下),有四种

(1)abortpolicy丢弃任务,抛出异常
(2)discardpolicy拒绝执行,不抛异常
(3)discardoldestpolicy 丢弃任务缓存队列中最老的任务
(4)CallerRunsPolicy 线程池不执行这个任务,主线程自己执行。

1、newFixedThreadPool 定长线程池

一个有指定的线程数的线程池,有核心的线程,里面有固定的线程数量,响应的速度快。正规的并发线程,多用于服务器。固定的线程数由系统资源设置。核心线程是没有超时机制的,队列大小没有限制,除非线程池关闭了核心线程才会被回收。

2、newCachedThreadPool 可缓冲线程池

只有非核心线程,最大线程数很大,每新来一个任务,当没有空余线程的时候就会重新创建一个线程,这边有一个超时机制,当空闲的线程超过60s内没有用到的话,就会被回收,它可以一定程序减少频繁创建/销毁线程,减少系统开销,适用于执行时间短并且数量多的任务场景。

3、ScheduledThreadPool 周期线程池

创建一个定长线程池,支持定时及周期性任务执行,通过过schedule方法可以设置任务的周期执行

4、newSingleThreadExecutor 单任务线程池

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行,每次任务到来后都会进入阻塞队列,然后按指定顺序执行。

关键源码解读

1、execute方法
 public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
       //判断当前线程个数是否小于corePoolSize(核心线程数),如果小于的话,就再创建一个线程,每个线程都被封装成一个Worker,
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
       //如果大于核心线程的话就尝试把任务加入缓存队列,这里增加了状态出现异常的确认判断,
       //如果状态出现异常会继续remove操作,如果执行true,则按照拒绝处理策略驳回任务
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //如果队列放不了,只能采用默认的拒绝服务策略了,
        else if (!addWorker(command, false))
            reject(command);
    }

源码中出现ctl的次数比较多,那么这是个什么呢?
我们可以看看它的定义

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
线程池状态
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
方法
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

它实质上就是一个线程安全的32位的Integer,用前三位表示线程池的状态,后29位来表示线程的个数,所以在计算个数的时候用到了workerCountOf,忽略前三位带来的影响。

2、Worker中的run方法

Worker就是对线程的封装,线程池中维护了一个HashSet<Worker>的一个集合来存储工作线程,每次addWork的时候就往这个里面加,因为HashSet是不安全的,所以加了ReentrantLock来做同步

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

其实这个操作很简单,就是一个while不断的去getTask,获得任务之后,就依次执行
beforeExecute(wt, task);
task.run();
afterExecute(task, thrown);
(发现每次执行任务的时候都加了锁,有点奇怪,这里我还要看一下)
那么假设任务队列中没有了呢?那这里就用到了我们定义的keeplivetime ,在getTask中有这样一段代码,

Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
也就是当超过keeplivetime 没有拿到就会返回null,这个时候循环就会截止,这个线程Wo也就会结束,所以说keepAliveTime指的是最长的poll时间

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352