在我们刚学习spring对bean的创建时,我们在方法#doCreateBean()方法中,其主要通过创建bean和一些初始化工作,大概有4个过程分别是:
- 调用#createBeanInstance(String beanName, RootBeanDefinition mbd, Object[] args) 方法,来进行bean的创建
- 对于单例模式的bean进行循环依赖的检查
- 通过调用#populateBean(beanName, mbd, instanceWrapper)来实现对刚创建的bean进行属性的填充
- 最后调用#initializeBean(beanName, exposedObject, mbd)完成bean的初始化
关于bean的创建我们在前面的篇章中已经完成了,接下来我们看看对于已完成bean的属性的填充,直接来看代码:
AbstractAutowireCapableBeanFactory.java
protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
//没有被封装的bean实例
if (bw == null) {
//如果有属性,则抛出BeanCreationException异常
if (mbd.hasPropertyValues()) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance");
}
else {
// Skip property population phase for null instance.
//没有可填充的属性
return;
}
}
// Give any InstantiationAwareBeanPostProcessors the opportunity to modify the
// state of the bean before properties are set. This can be used, for example,
// to support styles of field injection.
//1.在属性填充前,给InstantiationAwareBeanPostProcessor最后一次来改变bean的机会
boolean continueWithPropertyPopulation = true;
//通过mbd.isSynthetic()来判断当前bean的定义是否是合成的,而不是由应用来定义的
//通过hasInstantiationAwareBeanPostProcessors来判断当前bean是否持有 InstantiationAwareBeanPostProcessor
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
//循环遍历beanPostProcessors
for (BeanPostProcessor bp : getBeanPostProcessors()) {
//如果为InstantiationAwareBeanPostProcessor类型的
if (bp instanceof InstantiationAwareBeanPostProcessor) {
//赋值即可
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
//返回的值为是否为继续填充bean
//postProcessAfterInstantiation:如果应该在 bean上面设置属性则返回 true,否则返回 false,但是一般默认为true
//如果返回false的话,将会阻止在此 Bean实例上调用任何后续的InstantiationAwareBeanPostProcessor实例
if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
continueWithPropertyPopulation = false;
break;
}
}
}
}
//如果后续处理器发出停止填充命令,则终止后续操作
if (!continueWithPropertyPopulation) {
return;
}
//2.从rootBeanDefinition中获取bean的属性值
PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);
//获取resolvedAutowireMode的编码
int resolvedAutowireMode = mbd.getResolvedAutowireMode();
//如果编码为AUTOWIRE_BY_NAME为1或者AUTOWIRE_BY_TYPE为2
if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
//对PropertyValues属性进行封装成MutablePropertyValues对象
//因为MutablePropertyValues主要是可以对构造函数进行深度的拷贝,以及属性的操作,这样可以保证我们的属性值是独立的
MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
// Add property values based on autowire by name if applicable.
//根据名称自动注入
if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
autowireByName(beanName, mbd, bw, newPvs);
}
// Add property values based on autowire by type if applicable.
//根据类型自动注入
if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
autowireByType(beanName, mbd, bw, newPvs);
}
pvs = newPvs;
}
//是否已经初始化好后置处理器
boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
//是否需要依赖检查
boolean needsDepCheck = (mbd.getDependencyCheck() != AbstractBeanDefinition.DEPENDENCY_CHECK_NONE);
//3.bean的后置处理过程
PropertyDescriptor[] filteredPds = null;
if (hasInstAwareBpps) {
if (pvs == null) {
pvs = mbd.getPropertyValues();
}
//遍历BeanPostProcessor进行处理
for (BeanPostProcessor bp : getBeanPostProcessors()) {
//
if (bp instanceof InstantiationAwareBeanPostProcessor) {
//对所有需要依赖检查的属性进行后置处理
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
PropertyValues pvsToUse = ibp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName);
//从BeanWrapper中进行PropertyDescriptor结果集的提取
//对于PropertyDescriptor:描述一个java Bean的属性,可以通过一对方法可以提取一个属性
if (pvsToUse == null) {
if (filteredPds == null) {
filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
}
pvsToUse = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
if (pvsToUse == null) {
return;
}
}
pvs = pvsToUse;
}
}
}//4.依赖检查
if (needsDepCheck) {
if (filteredPds == null) {
filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
}
//依赖检查,其中对应的是我们配置文件的属性depens -on属性
checkDependencies(beanName, mbd, filteredPds, pvs);
}
//5. 将属性应用到bean中
if (pvs != null) {
applyPropertyValues(beanName, mbd, bw, pvs);
}
}
简单的梳理下该方法的流程:
在1处,通过hasInstantiationAwareBeanPostProcessors属性来判断,在属性填充前,给InstantiationAwareBeanPostProcessor最后一次来改变bean的机会,此过程可以控制是否继续进行属性的填充
在2处,根据AbstractBeanDefinition#getResolvedAutowireMode()返回的值来判断是以什么样的方式注入的,然后统一存放在PorpertyValues中.
根据名称来自动注入:autowireByName(beanName, mbd, bw, newPvs);
根据类型来自动注入: autowireByType(beanName, mbd, bw, newPvs);
在3处,进行后置处理
在4处,需进行依赖检查
在5处,将属性应用到bean中
接下来我们分别来看上述流程的每一个详细的过程
根据不同的值来自动注入
在spring中是主要通过两种不同的类型来注入的,是根据AbstractBeanDefinition#getResolvedAutowireMode()方法的值来做判断,来看代码:
//<1>获取resolvedAutowireMode的编码
int resolvedAutowireMode = mbd.getResolvedAutowireMode();
//如果编码为AUTOWIRE_BY_NAME为1或者AUTOWIRE_BY_TYPE为2
if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
//对PropertyValues属性进行封装成MutablePropertyValues对象
//因为MutablePropertyValues主要是可以对构造函数进行深度的拷贝,以及属性的操作,这样可以保证我们的属性值是独立的
MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
// Add property values based on autowire by name if applicable.
//根据名称自动注入
if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
autowireByName(beanName, mbd, bw, newPvs);
}
// Add property values based on autowire by type if applicable.
//根据类型自动注入
if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
autowireByType(beanName, mbd, bw, newPvs);
}
pvs = newPvs;
}
这就是这段根据不同类型来注入的部分代码,我们来看<1>处:
AbstractBeanDefinition.java
private int autowireMode = AUTOWIRE_NO;
public int getResolvedAutowireMode() {
if (this.autowireMode == AUTOWIRE_AUTODETECT) {
// Work out whether to apply setter autowiring or constructor autowiring.
// If it has a no-arg constructor it's deemed to be setter autowiring,
// otherwise we'll try constructor autowiring.
Constructor<?>[] constructors = getBeanClass().getConstructors();
for (Constructor<?> constructor : constructors) {
if (constructor.getParameterCount() == 0) {
return AUTOWIRE_BY_TYPE;
}
}
return AUTOWIRE_CONSTRUCTOR;
}
else {
return this.autowireMode;
}
}
这点代码主要的作用就是获取一个注入的类型,如果返回的值为1,则是通过名称去注入,如果是2,则是通过类型去注入,我们来看根据名称注入的过程:
autowireByName(根据名称去注入)
该方法是在#autowireByName(String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs)中,接着看:
protected void autowireByName(
String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
//<1>.在bw中寻找需要注入的属性名称
String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
//遍历处理
for (String propertyName : propertyNames) {
//如果容器中存在相关bean的名称
if (containsBean(propertyName)) {
//递归初始化相关的bean
Object bean = getBean(propertyName);
//给指定名称属性绑定值
pvs.add(propertyName, bean);
//给相关依赖的bean注册属性
registerDependentBean(propertyName, beanName);
if (logger.isTraceEnabled()) {
logger.trace("Added autowiring by name from bean name '" + beanName +
"' via property '" + propertyName + "' to bean named '" + propertyName + "'");
}
}
else {
if (logger.isTraceEnabled()) {
logger.trace("Not autowiring property '" + propertyName + "' of bean '" + beanName +
"' by name: no matching bean found");
}
}
}
}
该方法逻辑很清晰,首先寻找需要进行绑定属性的名称,也就是上述代码中的<1>处的方法,代码如下:
protected String[] unsatisfiedNonSimpleProperties(AbstractBeanDefinition mbd, BeanWrapper bw) {
Set<String> result = new TreeSet<>();
//从beanDefinition中获取属性值
PropertyValues pvs = mbd.getPropertyValues();
PropertyDescriptor[] pds = bw.getPropertyDescriptors();
//遍历处理
for (PropertyDescriptor pd : pds) {
if (pd.getWriteMethod() != null //有可写的方法
&& !isExcludedFromDependencyCheck(pd) //依赖检测没有被忽略的
&& !pvs.contains(pd.getName())//在pvs中不包含该属性名
&& !BeanUtils.isSimpleProperty(pd.getPropertyType())) {//不是简单型的类型
//添加
result.add(pd.getName());
}
}
return StringUtils.toStringArray(result);
}
获取到了属性的简易名称,接着是递归处理和给bean设置属性值,在绑定的过程中可能会有依赖问题的处理,那么我们当然还是先要给依赖的bean进行相关属性的设置,看代码:
DefaultSinglegtonBeanRegistry.java
/**保存的是依赖beanName之间的映射关系*/
private final Map<String, Set<String>> dependentBeanMap = new ConcurrentHashMap<>(64);
/**
* 给当前bean注册一个依赖的bean
* @param beanName 当前要创建的bean
* @param dependentBeanName 当前bean所依赖的bean的名字
*/
public void registerDependentBean(String beanName, String dependentBeanName) {
//获取原始beanName
String canonicalName = canonicalName(beanName);
// 添加 <canonicalName, <dependentBeanName>> 到 dependentBeanMap 中
synchronized (this.dependentBeanMap) {
Set<String> dependentBeans =
this.dependentBeanMap.computeIfAbsent(canonicalName, k -> new LinkedHashSet<>(8));
if (!dependentBeans.add(dependentBeanName)) {
return;
}
}
//同上
synchronized (this.dependenciesForBeanMap) {
Set<String> dependenciesForBean =
this.dependenciesForBeanMap.computeIfAbsent(dependentBeanName, k -> new LinkedHashSet<>(8));
dependenciesForBean.add(canonicalName);
}
}
根据类型自动注入(autowireByType)
关于类型注入是通过#autowireByType(String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) 方法来完成自动注入的,直接看代码:
protected void autowireByType(
String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
//获取自定义的TypeConverter实例
//主要的作用是代替PropertyEditor机制
TypeConverter converter = getCustomTypeConverter();
if (converter == null) {
converter = bw;
}
Set<String> autowiredBeanNames = new LinkedHashSet<>(4);
//获取非简单的属性名称(也就是在bw中去获取需要依赖注入的属性名称)
String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
//遍历处理
for (String propertyName : propertyNames) {
try {
//获取PropertyDescriptor实例
PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName);
// Don't try autowiring by type for type Object: never makes sense,
// even if it technically is a unsatisfied, non-simple property.
//不要通过类型去尝试着注入,因为它可能不是一个简单的属性,可能是多重属性的依赖关系
if (Object.class != pd.getPropertyType()) {
//探测指定属性的set方法
MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);
// Do not allow eager init for type matching in case of a prioritized post-processor.
boolean eager = !PriorityOrdered.class.isInstance(bw.getWrappedInstance());
DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);
// 解析指定beanName的属性所匹配的值,并把解析到的属性名称存储在autowiredBeanNames中
// 当属性存在多个封装bean时将会找到所有匹配的bean并将其注入
Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);
if (autowiredArgument != null) {
pvs.add(propertyName, autowiredArgument);
}
//遍历处理,并注册相关依赖的bean的属性
for (String autowiredBeanName : autowiredBeanNames) {
registerDependentBean(autowiredBeanName, beanName);
if (logger.isTraceEnabled()) {
logger.trace("Autowiring by type from bean name '" + beanName + "' via property '" +
propertyName + "' to bean named '" + autowiredBeanName + "'");
}
}
//清空autowiredBeanNames数组
autowiredBeanNames.clear();
}
}
catch (BeansException ex) {
throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex);
}
}
}
我们可以发现,通过名称和类型实现自动属性的注入很类似,首先都是在bw中去寻找需要依赖注入的属性,然后就是遍历处理匹配bean进行属性的设置,最后对于依赖同样也是做了处理,在根据类型去自动注入的过程中,有一个方法需要注意#resolveDependency(desc, beanName, autowiredBeanNames, converter),该方法主要是在注入前完成一些依赖解析工作,代码如下:
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
//获取一个ParameterNameDiscoverer实例
//初始化方法所需的参数
descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());
//如果注入的是Optional类型,通过createOptionalDependency来处理
if (Optional.class == descriptor.getDependencyType()) {
return createOptionalDependency(descriptor, requestingBeanName);
}
//如果依赖的类型为ObjectFactory或者是ObjectProvider类型的
else if (ObjectFactory.class == descriptor.getDependencyType() ||
ObjectProvider.class == descriptor.getDependencyType()) {
return new DependencyObjectProvider(descriptor, requestingBeanName);
}
//如果是javaxInjectProviderClass类型的依赖,需要做特殊的处理操作
else if (javaxInjectProviderClass == descriptor.getDependencyType()) {
return new Jsr330Factory().createDependencyProvider(descriptor, requestingBeanName);
}
//
else {
//通过#getLazyResolutionProxyIfNecessary(...)方法为实际依赖目标的延迟解析构建代理。
//默认是null
Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
descriptor, requestingBeanName);
if (result == null) {
//<...>这里是通用的处理逻辑
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
}
return result;
}
}
上面方法的处理过程中,我们可以发现真正的核心在<...>处,接着看:
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
//获取一个注入点实例
InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor);
try {
// 针对给定的工厂给定一个快捷实现的方式,例如考虑一些预先解析的信息
// 在进入所有bean的常规类型匹配算法之前,解析算法将首先尝试通过此方法解析快捷方式。
// 子类可以覆盖此方法
Object shortcut = descriptor.resolveShortcut(this);
//如果存在此快捷信息,则返回
if (shortcut != null) {
return shortcut;
}
//获取依赖的类型
Class<?> type = descriptor.getDependencyType();
//此处主要是用于支持spring的@value注解
Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor);
if (value != null) {
if (value instanceof String) {
String strVal = resolveEmbeddedValue((String) value);
BeanDefinition bd = (beanName != null && containsBean(beanName) ?
getMergedBeanDefinition(beanName) : null);
value = evaluateBeanDefinitionString(strVal, bd);
}
TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter());
try {
return converter.convertIfNecessary(value, type, descriptor.getTypeDescriptor());
}
catch (UnsupportedOperationException ex) {
// A custom TypeConverter which does not support TypeDescriptor resolution...
return (descriptor.getField() != null ?
converter.convertIfNecessary(value, type, descriptor.getField()) :
converter.convertIfNecessary(value, type, descriptor.getMethodParameter()));
}
}
//解析复合的bean,实质还是解析bean的属性
//不过考虑到了map array list等类型的
Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter);
if (multipleBeans != null) {
return multipleBeans;
}
//查找匹配类型相同的bean实例
// 返回的类型结构为:key = 匹配的beanName,value = beanName对应的实例化bean
Map<String, Object> matchingBeans = findAutowireCandidates(beanName, type, descriptor);
//没找到,检验@autowire 的require是否为 true
if (matchingBeans.isEmpty()) {
//如果的require为true且没有找到,直接抛raiseNoMatchingBeanFound异常
if (isRequired(descriptor)) {
raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
}
return null;
}
String autowiredBeanName;
Object instanceCandidate;
//找到了,确定给定bean的autowire的候选者
if (matchingBeans.size() > 1) {
autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor);
if (autowiredBeanName == null) {
if (isRequired(descriptor) || !indicatesMultipleBeans(type)) {
//唯一性的检查处理过程
return descriptor.resolveNotUnique(descriptor.getResolvableType(), matchingBeans);
}
else {
// In case of an optional Collection/Map, silently ignore a non-unique case:
// possibly it was meant to be an empty collection of multiple regular beans
// (before 4.3 in particular when we didn't even look for collection beans).
return null;
}
}
//最后从matchingBeans取出
instanceCandidate = matchingBeans.get(autowiredBeanName);
}
else {
// We have exactly one match.
//已经确认了只有一个匹配项
Map.Entry<String, Object> entry = matchingBeans.entrySet().iterator().next();
autowiredBeanName = entry.getKey();
instanceCandidate = entry.getValue();
}
if (autowiredBeanNames != null) {
autowiredBeanNames.add(autowiredBeanName);
}
if (instanceCandidate instanceof Class) {
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
Object result = instanceCandidate;
if (result instanceof NullBean) {
if (isRequired(descriptor)) {
raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
}
result = null;
}
if (!ClassUtils.isAssignableValue(type, result)) {
throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass());
}
return result;
}
finally {
//把它设置为一个注入点
ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);
}
}
到这里我们的属性填充基本上完事,按照我们的方法populateBean(...)的大致流程完成属性填充之后,接着是进行后置处理操作,这里我们先放过,后续来说,接下来我们来看一下将属性应用到bean中的过程:
applyPropertyValues
在populateBean(...)的代码片段中,首先是从beanDefinition中获取到属性的值,接着对PropertyValues属性值进行了封装成MutablePropertyValues的对象,经过一系列的处理最后通过#applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) 方法将属性应用到具体的bean中,我们来看代码实现:
protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
if (pvs.isEmpty()) {
return;
}
//设置当前BeanWrapperImpl的SecurityContext环境
if (System.getSecurityManager() != null && bw instanceof BeanWrapperImpl) {
((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());
}
//一种是MutablePropertyValues类型的
MutablePropertyValues mpvs = null;
//一种是original的类型的
List<PropertyValue> original;
//获取original类型
if (pvs instanceof MutablePropertyValues) {
mpvs = (MutablePropertyValues) pvs;
//如果已经转换了类型
if (mpvs.isConverted()) {
// Shortcut: use the pre-converted values as-is.
try {
//给相应的实例设置属性值,这里才是依赖注入的真正实现的地方
bw.setPropertyValues(mpvs);
return;
}
catch (BeansException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Error setting property values", ex);
}
}
original = mpvs.getPropertyValueList();
}
else {
//如果pvs不是MutablePropertyValues类型的,那么直接使用原始的属性获取方法
original = Arrays.asList(pvs.getPropertyValues());
}
//获取自定义TypeConverter类型
TypeConverter converter = getCustomTypeConverter();
if (converter == null) {
converter = bw;
}
//获取解析器
BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);
// Create a deep copy, resolving any references for values.
List<PropertyValue> deepCopy = new ArrayList<>(original.size());
boolean resolveNecessary = false;
//遍历属性,同时将属性转换为对应类的对应属性的类型
for (PropertyValue pv : original) {
if (pv.isConverted()) {
deepCopy.add(pv);
}
//转换对应属性的属性值
else {
String propertyName = pv.getName();
Object originalValue = pv.getValue();
//转换属性值,比如:将当前的引用转换为IOC容器中的实例化对象的引用
Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);
Object convertedValue = resolvedValue;
//判断属性值是否可以转换
boolean convertible = bw.isWritableProperty(propertyName) &&
!PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);
//通过自定义的TypeConverter类型进行属性值的转换
if (convertible) {
convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);
}
// Possibly store converted value in merged bean definition,
// in order to avoid re-conversion for every created bean instance.
//对转换后的属性值进行保存,避免之后每次创建实例重复转换工作
if (resolvedValue == originalValue) {
if (convertible) {
//设置转换后的值给pv
pv.setConvertedValue(convertedValue);
}
deepCopy.add(pv);
}
// 属性是可转换的,且属性原始值是字符串类型,且属性的原始类型值不是
// 动态生成的字符串,且属性的原始值不是集合或者数组类型
else if (convertible && originalValue instanceof TypedStringValue &&
!((TypedStringValue) originalValue).isDynamic() &&
!(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {
//进行设置
pv.setConvertedValue(convertedValue);
deepCopy.add(pv);
}
//没有转换
else {
//重新封装属性值
resolveNecessary = true;
deepCopy.add(new PropertyValue(pv, convertedValue));
}
}
}
//对转换过的属性值进行标记
if (mpvs != null && !resolveNecessary) {
mpvs.setConverted();
}
// Set our (possibly massaged) deep copy.
//这里是属性依赖注入的实现点
try {
bw.setPropertyValues(new MutablePropertyValues(deepCopy));
}
catch (BeansException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Error setting property values", ex);
}
}
上面就是applyPropertyValues方法的分析过程其主要是围绕着两个点来展开:
- 在进行属性值的注入时,如果属性值不需要转换,那么直接进行注入即可.
- 当需要对属性值进行转换时,首先是转换成对应类的属性的属性值,接着设置,最后完成注入
大致的就是分为这两类进行属性值的注入,如果需要转换属性值,这里涉及到了转换的方法#resolveValueIfNecessary(Object argName, @Nullable Object value),该方法我们后面详细来说,这里大家先知道一下,到这里我们已经完成了doCreateBean(...)的第二个阶段,我们的属性填充已经完成...