AI大模型企业应用实战(20)-RAG相似性检索的关键 - Embedding

1 文本Embedding

将整个文本转化为实数向量的技术。

Embedding优点是可将离散的词语或句子转化为连续的向量,就可用数学方法来处理词语或句子,捕捉到文本的语义信息,文本和文本的关系信息。

◉ 优质的Embedding通常会让语义相似的文本在空间中彼此接近:

◉ 优质的Embedding相似的语义关系可以通过向量的算术运算来表示:

2 文本Embedding模型的演进与选型

目前的向量模型从单纯的基于 NLI 数据集(对称数据集)发展到基于混合数据(对称+非对称)进行训练,即可以做 QQ召回任务也能够做 QD 召回任务,通过添加 Instruction 来区分这两类任务,只有在进行 QD 召回的时候,需要对用户 query 添加上 Instruction 前缀。

3 VDB通用Embedding模型

模型选择:

GPU资源:

4 VDB垂类Embedding模型

用户提供垂类文档数据,VDB对模型进行微调,助力垂类应用效果更进一步。

优化1

对比学习拉近同义文本的距离,推远不同文本的距离

优化2

短文本匹配和长文本匹配使用不同prompt,提升非对称类文本效果

优化3

预训练阶段提升基座模型面向检索的能力,对比学习阶段提高负样本数

5 存储、检索向量数据

5.1 为啥需要一个专用的向量数据库

  1. 查询方式与传统数据库存在区别
  2. 简单易用,无需关心细节
  3. 为相似性检索设计,天生性能优势

5.2 腾讯云向量数据库的优势

“首家”:

  • 通过信通院的标准化性能和规模测试
  • 支持千亿级向量规模和最高500W QPS

自研:

  • 内核源自集团自研OLAMA引擎
  • 内部已有40+业务接入

性价比:

  • 性能领先业内平均水平1.5
  • 同时客户成本降低20%

6 VDB优势

流程简化

模型简化:

共享GPU集群:

7 商用向量数据库

消除大模型幻觉,加速大模型在企业落地,如腾讯云:

7.1 端到端AI套件,AGI时代的知识库解决方案

提供一站式知识检索方案,实现业界内最高召回率、大幅降低开发门槛,帮助企业快速搭建RAG应用,解决大模型幻觉问题。

7.2 源自集团多年积累,产品能力行业领先

源自腾讯自研向量检索引擎OLAMA,集团内部40+业务线上使用,日均处理1600亿次检索请求。

  • 『首家』通过中国信通院向量数据库标准测试
  • 单索引支持最高千亿级超大数据规模
  • 单实例最高可达500万 QPS

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化
  • 活动&券等营销中台建设
  • 交易平台及数据中台等架构和开发设计
  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化
  • LLM应用开发

目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

本文由博客一文多发平台 OpenWrite 发布!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,271评论 5 466
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,725评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,252评论 0 328
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,634评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,549评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,985评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,471评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,128评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,257评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,233评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,235评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,940评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,528评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,623评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,858评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,245评论 2 344
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,790评论 2 339

推荐阅读更多精彩内容