大师兄的数据分析学习笔记(三十):半监督学习

大师兄的数据分析学习笔记(二十九):关联
大师兄的数据分析学习笔记(三十一):机器学习模型总结

一、 关于半监督学习

  • 半监督学习指的是数据中部分有标注、部分无标注,且通常无标注的部分远大于有标注的部分,主要由以下原因产生:
  • 从数据中获取标注的成本较大,且有些样本的标注不能通过自动化方式获取。
  • 无标注样本可能很容易获得。
  • 半监督学习的目标,就是尝试用数据中有标注的部分,为无标注的部分打上标注。
  • 半监督学习的主要算法思路包括生成思路判别思路

二、标签传播算法

  • 标签传播算法是典型的半监督学习算法,它的思路如下:
  1. 将没有标注的样本,和周围有标注的样本进行比较;
  2. 如果相似度高,就标注为临近的标注。
  3. 迭代以上的过程,优先标注离有标注样本比较近的无标注样本,然后将新被标过的样本考虑进来。
  • 标签传播算法的相似度有两种判别方法:

1.rbf:rbf(exp(-\gamma|x-y|^2),\gamma>0),其中x-y代表数据之间的距离,距离越远,算法约接近0。
2.knn:1[x'\in kNN(x)],在一个无标注数据周围找k个有标注数据,哪种标注多就用哪个赋值。

三、代码实现

>>>import numpy as np
>>>from sklearn import datasets
>>>from sklearn.semi_supervised import LabelPropagation
>>>from sklearn.metrics import accuracy_score,recall_score,f1_score

>>>iris = datasets.load_iris()
>>>target = iris.target
>>>labels = np.copy(target)
>>>unlabeld_points = np.random.rand(len(target))<0.1
>>>prime_labels = labels[unlabeld_points]
>>>labels[unlabeld_points] = -1
>>>print(f"unlabeled number:{list(labels).count(-1)}")

>>>label_prop_model = LabelPropagation()
>>>label_prop_model.fit(iris.data,labels)
>>>Y_pred = label_prop_model.predict(iris.data)
>>>Y_pred = Y_pred[unlabeld_points]

>>>print(f"ACC:{accuracy_score(prime_labels,Y_pred)}")
>>>print(f"REC:{recall_score(prime_labels,Y_pred,average='micro')}")
>>>print(f"F-Score:{f1_score(prime_labels,Y_pred,average='micro')}")
unlabeled number:13
ACC:0.8461538461538461
REC:0.8461538461538461
F-Score:0.8461538461538461

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容