Google Protocol Buffer

Protocol buffers are Google's language-neutral, platform-neutral, extensible mechanism for serializing structured data – think XML, but smaller, faster, and simpler.

How does protocol buffer work?

By defining the protocol buffer message types in .proto files, we can specify how our information to be serialized and how they are structured. Here is a basic example of a .proto file that defines a message containing information about a person:

message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;

  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
  }

  message PhoneNumber {
    required string number = 1;
    optional PhoneType type = 2 [default = HOME];
  }

  repeated PhoneNumber phone = 4;
}

Each message type has one or more uniquely numbered fields, and each field has a name and a value type, where values types can be numbers (integer or floating point), booleans, strings, raw bytes, or even other protocol buffer message types, allowing us to structure our data hierarchically. The field can be optional or required.

Once we have the message defined, we can run the protocal buffer compiler for our chosen language on the .proto file to generate data access classes Person. We can then use this class in our application to populate, serialize, and retrieve Person protocol buffer messages.

In Java we can write codes to utilize the Person class like this.

Person john = Person.newBuilder()
    .setId(1234)
    .setName("John Doe")
    .setEmail("jdoe@example.com")
    .build();
output = new FileOutputStream(args[0]);
john.writeTo(output);

And similar codes in C++.

Person john;
fstream input(argv[1],
    ios::in | ios::binary);
john.ParseFromIstream(&input);
id = john.id();
name = john.name();
email = john.email();

With Protocol Buffer, we can add new fields to our message formats without breaking backwards-compatibility; old binaries simply ignore the new field when parsing. Therefore, we can extend our protocol without worrying about breaking existing code.

Basic Steps

  1. Define message formats in a .proto file.
  2. Use the protocol buffer compiler.
  3. Use the Java/C++/Python protocol buffer API to write and read messages.

Define message formats in a .proto file

The definitions in a .proto file are simple: we add a message for each data structure we want to serialize, then specify a name and a type for each field in the message. Let's use the an address book application as an example. To define our messages, we start with the addressbook.proto.

package tutorial;

option java_package = "com.example.tutorial";
option java_outer_classname = "AddressBookProtos";

message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;

  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
  }

  message PhoneNumber {
    required string number = 1;
    optional PhoneType type = 2 [default = HOME];
  }

  repeated PhoneNumber phone = 4;
}

message AddressBook {
  repeated Person person = 1;
}

package & java_package

The .proto file starts with a package declaration package tutorial, which helps to prevent name conflicting. It will by default used as the Java package unless we explicitly specify the java_package as shown above. It is recommended to always specify a package to avoid name collisions in Protocol Buffer name spaces even in non-Java languages.

java_outer_classname

The java_outer_classname option defines the class name which should contain all of the classes in this file. If we don't give a java_outer_classname explicitly, it will be generated by converting the file name to camel case. For example, "my_proto.proto" would, by default, use "MyProto" as the outer class name.

Message

Next, we have the message definitions. A message is just an aggregate containing a set of typed fields. Several basic types are available: bool, int32, float, double and string.

Complex message type

A more complicated structure is supported. As shown above, Person message contains PhoneNumber messages, while the AddressBook message contains Person messages. We can even define message types nested inside other messages – as we can see, the PhoneNumber type is defined inside Person. Enum is also supported– here we have a phone number that can be one of MOBILE, HOME, or WORK.

Number tag

The " = 1", " = 2" markers on each element identify the unique "tag" that field uses in the binary encoding. Tag numbers 1-15 require one less byte to encode than higher numbers, so as an optimization we can decide to use those tags for the commonly used or repeated elements, leaving tags 16 and higher for less-commonly used optional elements. Each element in a repeated field requires re-encoding the tag number, so repeated fields are particularly good candidates for this optimization.

Required Optional Repreated

Each field must be annotated with one of the following modifiers:

  • required: a value for the field must be provided, otherwise the message will be considered "uninitialized". Trying to build an uninitialized message will throw a RuntimeException. Parsing an uninitialized message will throw an IOException.
  • optional: the field may or may not be set. If an optional field value isn't set, a default value is used. For simple types, we can specify our own default value, as we've done for the phone number type in the example. Otherwise, a system default is used: zero for numeric types, the empty string for strings, false for bools.
  • repeated: the field may be repeated any number of times (including zero). The order of the repeated values will be preserved in the protocol buffer.

More

We'll find a complete guide to writing .proto files – including all the possible field types – in the Protocol Buffer Language Guide.

Compiling Protocol Buffers

Now that we have a .proto, the next thing we need to do is generate the classes we'll need to read and write AddressBook messages. To do this, we need to run the protocol buffer compiler protoc on our .proto:

  • If we haven't installed the compiler, download the package.
  • Now run the compiler, specifying the source directory (where our application's source code lives with the current directory as default), the destination directory (where we want the generated code to go; often the same as the source directory), and the path to our .proto.
protoc -I=$SRC_DIR --java_out=$DST_DIR $SRC_DIR/addressbook.proto

Assuming we want Java classes, we use the --java_out option here. Similar options are provided for other supported languages.

This generates com/example/tutorial/AddressBookProtos.java in our specified destination directory.

The Protocol Buffer API - Java

If we look in AddressBookProtos.java, we can see that it defines a class called AddressBookProtos, nested within which is a class for each message we specified in addressbook.proto. Each class has its own Builder class that we use to create instances of that class.

Here are some of the accessors for the Person class.

// required string name = 1;
public boolean hasName();
public String getName();

// required int32 id = 2;
public boolean hasId();
public int getId();

// optional string email = 3;
public boolean hasEmail();
public String getEmail();

// repeated .tutorial.Person.PhoneNumber phone = 4;
public List<PhoneNumber> getPhoneList();
public int getPhoneCount();
public PhoneNumber getPhone(int index);

Meanwhile, Person.Builder has the same getters plus setters:

// required string name = 1;
public boolean hasName();
public java.lang.String getName();
public Builder setName(String value);
public Builder clearName();

// required int32 id = 2;
public boolean hasId();
public int getId();
public Builder setId(int value);
public Builder clearId();

// optional string email = 3;
public boolean hasEmail();
public String getEmail();
public Builder setEmail(String value);
public Builder clearEmail();

// repeated .tutorial.Person.PhoneNumber phone = 4;
public List<PhoneNumber> getPhoneList();
public int getPhoneCount();
public PhoneNumber getPhone(int index);
public Builder setPhone(int index, PhoneNumber value);
public Builder addPhone(PhoneNumber value);
public Builder addAllPhone(Iterable<PhoneNumber> value);
public Builder clearPhone();

As we can see, there are simple JavaBeans-style getters and setters for each field.

Create instances

Here is an example about how to create an instance of Person.

Person john = Person.newBuilder()
    .setId(1234)
    .setName("John Doe")
    .setEmail("jdoe@example.com")
    .addPhone(
      Person.PhoneNumber.newBuilder()
        .setNumber("555-4321")
        .setType(Person.PhoneType.HOME))
    .build();

Serialization and Deserialization

To persist the data, we can simply run the following codes.

Person john = Person.newBuilder()
    .setId(1234)
    .setName("John Doe")
    .setEmail("jdoe@example.com")
    .addPhone(
      Person.PhoneNumber.newBuilder()
        .setNumber("555-4321")
        .setType(Person.PhoneType.HOME))
    .build();

// Write to file
FileOutputStream output = new FileOutputStream("target/person.ser");  
john.writeTo(output);          
output.close();

Once persisted, we can read the data as such.

// Read from file
Person person = Person.parseFrom(new FileInputStream("target/person.ser");

The Protocol Buffer API - C++

For example in C++, we can write codes like:

Person person;
person.set_name("John Doe");
person.set_id(1234);
person.set_email("jdoe@example.com");
fstream output("myfile", ios::out | ios::binary);
person.SerializeToOstream(&output);

Then later on we can read the message back like:

fstream input("myfile", ios::in | ios::binary);
Person person;
person.ParseFromIstream(&input);
cout << "Name: " << person.name() << endl;
cout << "E-mail: " << person.email() << endl;

Check out this post for more information:)

Reference

Google Developer Protocol Buffer

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容