论文(1)yolo

YOLO(YOU ONLY LOOK ONCE)

1.文章概要

用于目标检测(Object Detection)任务,可以一次性完成对象的检测和分类(Classfication)。检测速度能达到50帧(FPS)以上,mAP(mean average precision)在VOC达到70%以上。
上面解决的方法是相对于Faster RCNN这类检测算法来说的,同类的算法还有SSD(Single Shot MultiBox Detector),为何名称不缩写成SSMD。。。

2.基本思路

把图像分成SxS个格子,如果一个目标落在某个格子中,那么就由该格子负责预测这个目标,每个格子预测B个Box,每个预测有五个参数confidence,x,y,w,h。
x,y:目标中心坐标
w,h:目标长宽
除了检测目标的外接矩形外,还要检测目标类别。
预测值是一个SxSx(Bx5+C)的tensor(张量)。
在VOC数据集上S取7,B取2,C为20。
C为类别数量。
这里显然是存在一些缺陷的,最明显的例子就是当两个物体在一个格子内时就没法同时检测这两个目标了(毕竟后面的分类只能有一种)

![Upload Paste_Image.png failed. Please try again.]

训练图像大小问题?
被统一处理成416*416
关于图像大小处理的代码

3.代码实现

void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy)
{
    char labelpath[4096];
    find_replace(path, "images", "labels", labelpath);
    find_replace(labelpath, "JPEGImages", "labels", labelpath);

    find_replace(labelpath, ".jpg", ".txt", labelpath);
    find_replace(labelpath, ".png", ".txt", labelpath);
    find_replace(labelpath, ".JPG", ".txt", labelpath);
    find_replace(labelpath, ".JPEG", ".txt", labelpath);
    int count = 0;
    box_label *boxes = read_boxes(labelpath, &count);
    randomize_boxes(boxes, count);
    correct_boxes(boxes, count, dx, dy, sx, sy, flip);
    float x,y,w,h;
    int id;
    int i;

    for (i = 0; i < count; ++i) {
        x =  boxes[i].x;
        y =  boxes[i].y;
        w =  boxes[i].w;
        h =  boxes[i].h;
        id = boxes[i].id;

        if (w < .005 || h < .005) continue;

        int col = (int)(x*num_boxes);
        int row = (int)(y*num_boxes);

        x = x*num_boxes - col;
        y = y*num_boxes - row;

        int index = (col+row*num_boxes)*(5+classes);
        if (truth[index]) continue;
        truth[index++] = 1;

        if (id < classes) truth[index+id] = 1;
        index += classes;

        truth[index++] = x;
        truth[index++] = y;
        truth[index++] = w;
        truth[index++] = h;
    }
    free(boxes);
}

上面这段代码用来构建目标值。从代码中可以明显开除如果某个格子内有多个目标是无法完成检测任务的。
nms算法

Paste_Image.png

segmentation fault

如在把names改成中文,会出现segmentation fault。代码在图像上绘制文字,采用的是贴图的方式,也就是它只有10个数字和26个字母的图像,对于其它文字就不能绘制。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容