Elasticsearch——评分机制详解

前言

一个搜索引擎使用的时候必定需要排序这个模块,如果在不选择按照某一字段排序的情况下,都是按照打分的高低进行一个默认排序的,所以如果正式使用的话,必须对默认排序的打分策略有一个详细的了解才可以,否则被问起来为什么这个在前面,那个在后面?

评分模型

将查询作为输入,将每一个因素最后通过公式综合起来,返回该文档的最终得分。这个综合考量的过程,就是将相关的文档被优先返回的考量过程。

Elasticsearch是基于Lucene的,所以它的评分机制也是基于Lucene的。在Lucene中把这种相关性称为得分(score),确定文档和查询有多大相关性的过程被称为打分(scoring)。

ES最常用的评分模型是 TF/IDF和BM25,TF-IDF属于向量空间模型,而BM25属于概率模型,但是他们的评分公式差别并不大,都使用IDF方法和TF方法的某种乘积来定义单个词项的权重,然后把和查询匹配的词项的权重相加作为整篇文档的分数。

在ES 5.0版本之前使用了TF/IDF算法实现,而在5.0之后默认使用BM25方法实现。

相关性算分

relevance score相关性算分:简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度。

通过倒排索引可以获取与查询语句相匹配的文档列表,那么如何将最符合用户查询需求的文档放到前列呢?

本质是一个排序问题,排序的依据是相关性算分。

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法。TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)

相关性算分的几个重要概念如下:

  • Term Frequency(TF)词频:即单词在该文档中出现额次数,词频越高,相关度越高。

  • Inverse Document Frequency(IDF)逆向文档频率:与文档频率相反,简单理解为1/DF。即单词出现的文档数越少,相关度越高。

  • Document Frequency(DF)文档频率:即单词出现的文档数。

  • Field-length Norm:文档越短,相关性越高,field长度,field越长,相关度越弱

ES目前主要有两个相关性算分模型,如下:

  • TF/IDF 模型
  • BM25 模型,5.x之后的默认模型

相关性算分-TF/IDF 模型

  • TF/IDF模型是Lucene的经典模型,其计算公式如下:


  • 可以通过explain参数来查看具体的计算方式,但要注意:

    • es的算分是按照shard进行的,即shard的分数计算是相互独立的,所以在使用explain的时候要注意分片数。
    • 可以设置索引的分片数为1来避免这个问题。


相关性算分-BM25 模型

  • BM25 模型中BM指的Best Match,25指的是在BM25中的计算公式是第25次迭代优化,是针对TF/IDF的一个优化,其计算公式如下:


对IDF的改良

BM25中的IDF公式为:


原版BM25的log中是没有加1的,Lucene为了防止产生负值,做了一点小优化。虽然对公式进行了更改,但其实和原来的公式没有实质性的差异,下面是新旧函数曲线对比:


对TF的改良

BM25中TF的公式为:


其中tf是传统的词频值。先来看下改良前后的函数曲线对比(下图中k=1.2):


可以看到,传统的tf计算公式中,词频越高,tf值就越大,没有上限。但BM中的tf,随着词频的增长,tf值会无限逼近(k+1),相当于是有上限的。这就是二者的区别。一般 k取 1.2,Lucene中也使用1.2作为 k 的默认值。

在传统的计算公式中,还有一个norm。BM25将这个因素加到了TF的计算公式中,结合了norm因素的BM25中的TF计算公式为:

和之前相比,就是给分母上面的 k 加了一个乘数 (1.0−b+b∗L)(1.0−b+b∗L)。 其中的 L 的计算公式为:


其中,|d|是当前文档的长度,avgDl 是语料库中所有文档的平均长度。

b 是一个常数,用来控制 L 对最总评分影响的大小,一般取0~1之间的数(取0则代表完全忽略 L )。Lucene中 b 的默认值为 0.75。

通过这些细节上的改良,BM25在很多实际场景中的表现都优于传统的TF-IDF,所以从Lucene 6.0.0版本开始,上位成为默认的相似度评分算法。

配置

{
  "settings":{
    "index":{
      "analysis":{
        "analyzer":"ik_smart"
      }
    },
    "similarity":{
      "my_custom_similarity":{
        "type":"BM25",
        "k1":1.2,
        "b":0.75,
        "discount_overlaps":false
      }
    }
  },
  "mappings":{
    "doc":{
      "properties":{
        "title":{
          "type":"text",
          "similarity":"my_custom_similarity"
        }
      }
    }
  }
}

上例是通过similarity属性来指定打分模型,用到了以下三个参数:

  • k1:控制对于得分而言词频(TF)的重要性,默认为1.2。
  • b:是介于0 ~ 1之间的数值,控制文档篇幅对于得分的影响程度,默认为0.75。
  • discount_overlaps:在某个字段中,多少个分词出现在同一位置,是否应该影响长度的标准化,默认值是true。

如果我们要使用某种特定的打分模型,并且希望应用到全局,那么就在elasticsearch.yml配置文件中加入:

index.similarity.default.type: BM25

评分中的boosting

通过boosting可以人为控制某个字段的在评分过程中的比重,有两种类型:

  • 索引期间的boosting
  • 查询期间的boosting

通过在mapping中设置boost参数,可以在索引期间改变字段的评分权重:

{
  "mappings":{
    "doc":{
      "properties":{
        "name":{
          "boost":2.0,
          "type":"text"
        },
        "age":{
          "type":"long"
        }
      }
    }
  }
}

需要注意的是:在索引期间修改的文档boosting是存储在索引中的,要想修改boosting必须重新索引该篇文档。

一旦映射建立完成,那么所有name字段都会自动拥有一个boost值,并且是以降低精度的数值存储在Lucene内部的索引结构中。只有一个字节用于存储浮点型数值(存不下就损失精度了),计算文档的最终得分时可能会损失精度。

另外,boost是应用与词条的。因此,再被boost的字段中如果匹配上了多个词条,就意味着计算多次的boost,这将会进一步增加字段的权重,可能会影响最终的文档得分。

查询期间的boosting可以避免上述问题。

几乎所有的查询类型都支持boost,例如:

GET /book/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "name":{
              "query": "java",
              "boost": 2.5
            }
          }
        },
        {
          "match": {
            "description": "java 程序员"
          }
        }
      ]
    }
  }
}

就对于最终得分而言,加了boost的name查询更有影响力。也只有在bool查询中,boost更有意义。

boost也可以用于multi_match查询。

GET /book/_search
{
  "query":{
    "multi_match":{
      "query":"java 程序员",
      "fields":[
        "name",
        "description"
      ],
      "boost":2.5
    }
  }
}

除此之外,我们还可以使用特殊的语法,只为特定的字段指定一个boost。通过在字段名称后添加一个^符号和boost的值。告诉ES只需对那个字段进行boost:

GET /book/_search
{
  "query":{
    "multi_match":{
      "query":"java 程序员",
      "fields":[
        "name^3",
        "description"
      ]
    }
  }
}

上例中,title字段被boost了3倍。

需要注意的是:在使用boost的时候,无论是字段或者词条,都是按照相对值来boost的,而不是乘以乘数。如果对于所有的待搜索词条boost了同样的值,那么就好像没有boost一样。因为Lucene会标准化boost的值。如果boost一个字段4倍,不是意味着该字段的得分就是乘以4的结果。

explain评分细节

ES背后的评分过程比我们想象的要复杂,有时候某个查询结果可能跟我们的预期不太一样,这时候可以通过explain让ES解释一下评分细节。

GET /book/_search
{
  "query": {
    "match": {
      "name": "spring"
    }
  },
  "explain": true,
  "_source": "name", 
  "size": 1
}

由于结果太长,我们这里对结果进行了过滤("size": 1返回一篇文档),只查看指定的字段("_source": "name"只返回name字段)。

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.9331132,
    "hits" : [
      {
        "_shard" : "[book][0]",
        "_node" : "jSOjG5zoTwuvHsd5KJTUZw",
        "_index" : "book",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.9331132,
        "_source" : {
          "name" : "spring开发基础"
        },
        "_explanation" : {
          "value" : 0.9331132,
          "description" : "weight(name:spring in 2) [PerFieldSimilarity], result of:",
          "details" : [
            {
              "value" : 0.9331132,
              "description" : "score(freq=1.0), product of:",
              "details" : [
                {
                  "value" : 2.2,
                  "description" : "boost",
                  "details" : [ ]
                },
                {
                  "value" : 0.98082924,
                  "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                  "details" : [
                    {
                      "value" : 1,
                      "description" : "n, number of documents containing term",
                      "details" : [ ]
                    },
                    {
                      "value" : 3,
                      "description" : "N, total number of documents with field",
                      "details" : [ ]
                    }
                  ]
                },
                {
                  "value" : 0.43243244,
                  "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                  "details" : [
                    {
                      "value" : 1.0,
                      "description" : "freq, occurrences of term within document",
                      "details" : [ ]
                    },
                    {
                      "value" : 1.2,
                      "description" : "k1, term saturation parameter",
                      "details" : [ ]
                    },
                    {
                      "value" : 0.75,
                      "description" : "b, length normalization parameter",
                      "details" : [ ]
                    },
                    {
                      "value" : 3.0,
                      "description" : "dl, length of field",
                      "details" : [ ]
                    },
                    {
                      "value" : 2.6666667,
                      "description" : "avgdl, average length of field",
                      "details" : [ ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

在新增的_explanation字段中,可以看到value值是0.9331132,那么是怎么算出来的呢?

分词spring在描述字段(name)出现了1次,所以TF的综合得分经过"description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:"计算,得分是0.43243244。

那么逆文档词频呢?根据"description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:"计算得分是0.98082924。

需要注意的是,explain的特性会给ES带来额外的性能开销,一般只在调试时使用。

分析一个document是如何被匹配上的

GET /book/_explain/3
{
  "query": {
    "match": {
      "description": "java程序员"
    }
  }
}

Doc value

搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values。

在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用。

doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os会将其写入磁盘上。

DocValues默认是启用的,可以在创建索引的时候关闭,如果后面要开启DocValues,需要做reindex操作。

参考:
https://www.elastic.co/guide/cn/elasticsearch/guide/current/scoring-theory.html

https://blog.csdn.net/qq_29860591/article/details/109574595

//www.greatytc.com/p/2624f61f1d02

http://www.dtmao.cc/news_show_378736.shtml

https://blog.csdn.net/molong1208/article/details/50623948

https://www.cnblogs.com/Neeo/articles/10721071.html

https://www.cnblogs.com/jpfss/p/10775376.html

https://zhuanlan.zhihu.com/p/27951938

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容