EM算法学习(三)

在前两篇文章中,我们已经大致的讲述了关于EM算法的一些基本理论和一些基本的性质,以及针对EM算法的缺点进行的优化改进的新型EM算法,研究之后大致就能够进行初步的了解.现在在这最后一篇文章,我想对EM算法的应用进行一些描述:

EM算法在多元正态分布缺失的数据下一般都是有较为广泛的应用,所以在这样典型的应用情境下,我将主要研究EM算法在二元正态分布下的应用.

1:二元正态分布的介绍:

设二维的随机变量(X,Y)的概率密度为:

其中u1,u2,p,&1,&2都是常数,并且&1>0,%2>0,-1

因为接下来的推导需要几个性质,现在先给出几个重要的性质:

性质1:二元正态分布的边际分布

证:

由于

于是得到:

在这里设一个参数t:

即可以得到:

同理:

哼,证明证明出来了

性质2:正态分布的条件分布仍是正态分布

二元正态分布(X,Y) ~N(u,M),其中:

求证:

证明过程如下:

2:对于二元正态分布均值的MCEM估计:

设总体Z=(X,Y)~N(u,M),其中:

现在有如下的观测数据:

显然这个数据是缺失的,如果数据完整的话,那么这个参数估计起来很简单,用极大似然估计就OK,但是这样的数据不完整的情况下,用极大似然估计求参数是非常困难的,现在我们知道EM算法对于缺失数据是非常有利的,现在我们用EM算法来求:

假设协方差矩阵

估计未知参数:

首先以u=[2,4]为例产生二元正态分布随机数,并将产生的随机数扣掉一部分数据,将扣掉的这一部分数据当成未知的缺失数据M=[M1,M2],剩下的数据作为观测数据Z=[X,Y]

假设在第K+1次迭代中有u的估计值u(k)=[u1(k),u2(k)],在上边的性质中,可以应用得到:

然后按照上边的条件分布生成n个随机数:

M1=(m1(1),m1(2),……..m1(n))

M2=(m2(1),m2(2)…….m2(n))

计算E步,得出Q函数:

这样M1与观察数据构成完全数据(M1(K),X),在M步中,对于函数Q的未知参数u1求导进行极大似然估计,想当是对在完全数据下的u1求极大似然估计,即:

这里的M1表示在完全数据下的均值,u2的估计值求法与此相似.

有兴趣的同学可以用MATLAB这样的工具试一试,实验室的小伙伴试验后表示在u1,u2初始值都为1,迭代20次以后,最终都会收敛,u1=2.0016,u2=3,9580

3:高斯混合分布的定义;

混合模型是指随机变量X的概率密度函数为下式:

这个式子表现的是这个混合模型有M个分支组成,每个分支的权值为ak,当每个分支的分布都是高斯分布时,则称混合分布为有M个分支的高斯混合分布(GMM)

现在进行假设:

设样本观测值为X={x1,x2,,,,,xN},由上边的式子的到,高斯分布混合分布的对数似然函数可以写成:

我们现在进行简化:

把上式中的累加求和去掉,,如果直接对对数似然函数求导来寻求极值是不可行的。但是如果我们知道每一个观测值甄具体是来自M个分支的哪一个分支的,则问题的难度就会下降很多。因此,从这个想法出发,我们引进隐含变 量y,它是这么定义的:设Y={y1,y2,,,,yN}且y(i)∈{1,2,…,M},i= 1,2,…,N。则当y(i)=k时,表示第i个样本观测值x(i)是由高斯混合分布的第k个分支产生的。因此,引入变量y后,对数似然函数可以改写成为:

改写似然函数之后,我们就可以考虑用EM算法来对模型进行参数估计。

在算法的E步中,需要求完全数据的对数似然函数的期望。假设在第t一

1次迭代开始时,X已知,而Y是变量,对Y积分有:

已知第i个观察x(i)来自第K个分支的概率为p,因此下边的式子可以写为:

而由贝叶斯公式可知

在接下来M步中,我们要求极大化式函数:

首先为了求u(k),可以将Q对u(k)进行求偏导并令其为零,即:

可得:

同理求&k平方:

最后,为了求ak,我们引入拉格朗日乘子:

因此有:

将这个式子进行求和得到:

最后将入=-N带入上式,得到:

至此,我们得到所有参数的更新公式,通过编程可以实现迭代得到参数估 计。

4:至于HMM隐马尔科夫模型算法,我也是正在学习,以后再专门一篇文章进行讲述

总结:在写这一系列文章中,发现了EM算法当前存在的一些问题,但是自己的能力实在不行,比如尽管提到了使用N-R和aitken算法进行加速,但是计算还是太复杂,更有意思的是如何巧妙地拓展参数空间进行加速收敛.还有在高斯混合模型研究中,本文是因为事先知道GMM分支的数量来 进行估计的,但是如果给的是一堆杂乱的数据,需要解决如何确定分支的问题,才能更好的拟合样本,这是一个有待考虑的问题 .最后还有EM算法在其他模型中的应用,在其他方向的应用,如不止可以用来进行参数估计,还

可以进行假设检验等。

通过近期对EM算法的研究,可以看出EM算法在处理数据缺失问题中优势明显,算法和原理简单,收敛稳定,适用性广,当然其也存在诸多缺点(比如收敛速度慢;E步、M步计算困难)等,但是相信随着更多的学者对EM算法进行深入的研究,EM算法会得到更大的推广和改进,这些问题也都会逐步得到解决。

也希望这方面的相关人士可以给我一些指教,不胜感激.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 在上一篇文章写到了EM算法的收敛性证明以后便匆匆的结尾,然后我出去玩了几天,玩的爽了,回来开始继续补之前的flag...
    云时之间阅读 3,114评论 2 8
  • EM算法是英文expectation-maximization算法的英文简写,翻译过来就是期望最大化算法,其实是一...
    云时之间阅读 4,292评论 0 13
  • 一、实验目的 学习使用 weka 中的常用分类器,完成数据分类任务。 二、实验内容 了解 weka 中 explo...
    yigoh阅读 8,503评论 5 4
  • 在“Hinton是如何理解PCA?”里面,我们体会到Hinton高人一等的见解。 Hinton, 这个深度学习的缔...
    史春奇阅读 3,151评论 0 13
  • 三月清明,人家门前爆竹三千,正值桃花开,采之放高堂,未至子时花早谢,怎么好送儿郎?你们在哪边? 七月鬼节,最先冲出...
    风吹稻子阅读 179评论 0 1