证明在复射影空间中,由次数最多为d的齐次多项式定义的有限集的元素个数不超过dⁿ

nd为正整数。设F_1,...,F_m\mathbb{C}[X_0,...,X_n]中次数最多为d的齐次多项式使得

V(F_1,...,F_m):={(x_0 :...: x_n )\in \mathbb{CP}^n|F_1(x_0,...,x_n)=...=F_m(x_0,...,x_n)=0}

是个有限集;这里\mathbb{CP}^n是指n维复射影空间。证明:V(F_1,...,F_m)的元素个数至多是d^n

这个证明的关键在于理解复射影空间中的齐次多项式的零集的性质,以及如何利用这些性质来估计多个多项式的零集的元素个数。通过组合原理,我们能够得出一个关于零集元素个数的上界。

证:

1.问题条件:

  • nd 为正整数。

  • F_1,\ldots,F_m\mathbb{C}[X_0,\ldots,X_n] 中次数至多为d的齐次多项式。

  • V(F_1,\ldots, F_m) 是有限集。

2.单个多项式零集的性质:

\mathbb{CP}^n中,单个次数为d的齐次多项式的零集是一个代数簇。对于齐次多项式F_i,其零集 V(F_i)\mathbb{CP}^n中的一个超曲面。

3.多个多项式的零集的关系:

当我们考虑多个齐次多项式 F_1,\ldots,F_m的零集时,V(F_1,\ldots,F_m)是这些超曲面的交集。根据条件,V(F_1,\ldots,F_m)是一个有限集,这表明这些超曲面是“横截的”,即它们的交集是有限个点。

4.元素个数的估计:

我们需要估计 V(F_1,\ldots,F_m) 的元素个数。一个有力的工具是贝祖定理(Bezout's theo- rem)。贝祖定理指出,如果我们有n 个齐次多项式 F_1,\ldots,F_n,其中每个多项式的次数分别为d_1,\ldots, d_n,那么这些多项式的零集的点数(在一般位置下)最多是d_1\cdot d_2\cdots d_n

在我们的情况下,假设m=n(即我们有n个多项式),并且每个多项式的次数至多为d。根据贝祖定理,V(F_1,\ldots, F_n)的点数至多是d \cdot d \cdot \ldots \cdot d = d^n

如果m<n(即多项式的数量少于变量的数量),我们可以通过添加n-m个次数为d的随机齐次多项式来补足,这样不改变原问题的性质。根据贝祖定理,新的系统的解的点数仍然至多是d^n

综上,V(F_1,\ldots, F_m)的元素个数至多是d^n

参考资料:裴蜀定理(贝祖定理)

数学定理

在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理,裴蜀定理得名于法国数学家艾蒂安·裴蜀。

裴蜀定理说明了对任何整数 a、b和它们的最大公约数 d ,关于未知数 x以及 y 的线性的丢番图方程(称为裴蜀等式)。

简介

裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1。

n个整数间的裴蜀定理

设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1a1+x2a2+...xn*an=d。

特别来说,如果a1...an存在任意两个数是互质的(不必满足两两互质),那么存在整数x1......xn使得x1a1+x2a2+...xn*an=1。证法类似两个数的情况。

任意主理想环上的情况

裴蜀可以推广到任意的主理想环上。设环A是主理想环,a和b 为环中元素,d是它们的一个最大公约元,那么存在环中元素x和y使得:

ax + by = d

这是因为在主理想环中,a和b的最大公约元被定义为理想aA + bA的生成元。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容