数据处理基石:Pandas数据探索

Pandas数据初探索

本文介绍的是Pandas数据初探索。当我们生成或者导入了数据之后,通过数据的探索工作能够快速了解和认识数据基本信息,比如数据中字段的类型、索引、最值、缺失值等,可以让我们对数据的全貌有一个初步了解。

image

思维导图

image

模拟数据

本文中的方法介绍使用的是一份模拟数据,有字符型、数值型,还有时间类型;同时数据刻意存在了缺失值:

image

使用pandas的read_excel方法对数据进行读取:

image

同时生成一个Series类型数据:

image

数据样本

头尾数据查看

  • head(N):默认是头部5条,可以指定查看N条
  • tail(N):默认是尾部5条,可以指定查看N条
image

随机查看sample

默认是随机看一条数据,也可以指定查看的条数:

image

查看数据形状shape

在这里的形状指的是数据有多少行和多少列,通过查看数据的shape就能知道数据的大小

  • DataFrame类型:两个数值,表示行和列
  • Series类型:只有行数
image

数据大小size

数据大小表示的是数据中总共有多少个数据,即shape方法的结果中两个数值相乘

df.size  # 56=7*8

数据维度ndim

表示数据是多少维,比如二维,三维等

image

数据基本信息info

显示数据类型、索引情况、行列数、列属性名称、占用的内存等信息;Series数据没有该方法

image

数据类型dtypes

df.dtypes  # 每个列属性的数据类型
s.dtype  # 没有s,结果一个类型
image

列属性和行索引

通过axes来查看;DataFrame数据既有行索引也有列名,Series数据只有行索引。

image

查看行索引

通过专门的index属性来查看行索引

image

查看列属性

df.columns
image

查看数据

两个方法或属性查看:

  • values
  • to_numpy()
image

查看缺失值

在数据帧中如果存在缺失值,则用True表示,否则取值为False:

image

查看内存情况memory_usage()

查看每列的内存使用情况,以字节为单位:

df.memory_usage()
s.memory_usage()
image

统计信息

描述信息只针对数值型的数据,可以看到该字段中数据的统计值信息

整体信息describe

返回的是数值型数据中的个数、均值、方差、四分位数等统计值情况

df.describe()
image

查看均值

一般 DataFrame 计算后为一个 Series,Series 计算后是一个具体的数值

下面的代码是按照列来计算均值:

df.mean()  # 按列计算

# 结果
age         21.714286
chinese    111.285714
math       117.000000
english    119.571429
dtype: float64

查看某个列的均值:

df["math"].mean()  # 117.0

下面的代码是按照行来计算均值:

df.mean(1)  # 按照行计算

0    89.50
1    96.25
2    87.50
3    93.50
4    89.25
5    95.50
6    95.25
dtype: float64
image

Pandas内置数学计算方法

Pandas中内置的多种数学计算函数

# 默认按照列0计算,1表示按照行计算

df.abs() # 绝对值
df.mode() # 众数
df.mean() # 返回所有列的均值
df.mean(1) # 返回所有行的均值
df.max() # 返回每一列的最大值
df.min() # 返回每一列的最小值
df.median() # 返回每一列的中位数
df.std() # 返回每一列的标准差, 贝塞尔校正的样本标准偏差
df.var() # 无偏方差
df.corr() # 返回列与列之间的相关系数
df.count() # 返回每一列中的非空值的个数
df.prod() # 连乘
df.mad() # 平均绝对偏差
df.cumprod() # 累积连乘,累乘
df.cumsum(axis=0) # 累积连加,累加
df.nunique() # 去重数量,不同值的量
df.sem() # 平均值的标准误差
df.idxmax() # 每列最大的值的索引名
df.idxmin() # 最小
df.cummin() # 累积最小值
df.cummax() # 累积最大值
df.skew() # 样本偏度 (第三阶)
df.kurt() # 样本峰度 (第四阶)
df.quantile() # 样本分位数 (不同 % 的值)

总结

本文主要是对Pandas中的数据探索做了一个详细介绍,帮助我们快速了解数据的基本信息,同时也方便后续的数据处理和分析。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容