代码:
import sys
import numpy as np
import caffe
import os
import time
import shutil
from PIL import Image
def get_image_files():
#获取path路径下所有图片的名字
path = '/home/fwei/fdata/zhangye/img'
files = os.listdir(path)
s=[]
for file in files:
s.append(file)
return s
def remove_bad_images():
#对于不能正常读取的图片,从文件夹下移除
s = get_image_files()
for image in s:
try:
image_file = '/home/fwei/fdata/zhangye/img/' +image
img = Image.open(image_file)
img.verify()
#img = caffe.io.load_image(image_file)
except IOError:
print(image_file)
shutil.move(image_file,'/home/fwei/fdata/errimg')
def extra_image_feature():
model_file = '/home/fwei/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
deploy_prototxt = '/home/fwei/caffe/models/bvlc_reference_caffenet/deploy.prototxt'
net = caffe.Net(deploy_prototxt,model_file,caffe.TEST)
layer = 'fc7' #提取fc7层的特征
if layer not in net.blobs:
raise TypeError("Invalid layer name: " + layer)
imagemean_file = '/home/fwei/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy'
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', np.load(imagemean_file).mean(1).mean(1))
transformer.set_transpose('data', (2,0,1))
transformer.set_raw_scale('data', 255.0)
net.blobs['data'].reshape(1,3,227,227)
image_files = get_image_files()
i=0
caffe.set_device(0)
caffe.set_mode_gpu()
for input_image_file in image_files:
img_file = '/home/fwei/fdata/zhangye/img/'+input_image_file
print ('No '+str(i))
print img_file
print '_______________________________'
img = caffe.io.load_image(img_file)
net.blobs['data'].data[...] = transformer.preprocess('data', img)
net.forward()
feature_data = net.blobs[layer].data[0]
feature_data = (feature_data - feature_data.min())/(feature_data.max() - feature_data.min())
output_file = input_image_file+'.txt'
with open(output_file, 'w') as f:
np.savetxt(f,feature_data,fmt='%.10f',delimiter='\n')
f.close()
i+=1
print i
remove_bad_images()
extra_image_feature()