当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。除了释放没用的对象,垃圾收集也可以清除内存记录碎片。
1、 引用计数法(Reference Counting Collector)
引用计数法是唯一没有使用根集的垃圾回收的法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。
基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须 实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量,计数器加1,而每次现有对象出了作用域生,计数器减1。
ps:用根集的方法(既有向图的方法)进行内存对象管理,可以消除循环引用的问题.就是说如果有三个对象相互引用,只要他们和根集是不可达的,gc也是可以回收他们.根集的方法精度很高,但是效率低.计数器法精度低(无法处理循环引用),但是执行效率高.
2、tracing算法(Tracing Collector)
tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除 (mark-and-sweep)垃圾收集器。
3、compacting算法(Compacting Collector)
为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来 的对象。在基于Compacting 算法的收集器的实现中,一般增加句柄和句柄表。
4、copying算法(Coping Collector)
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。
将内存分为两个区域(from space和to space)。所有的对象分配内存都分配到from space。在清理非活动对象阶段,把所有标志为活动的对象,copy到to space,之后清楚from space空间。然后互换from sapce和to space的身份。既原先的from space变成to sapce,原先的to space变成from space。每次清理,重复上述过程。
优点:copy算法不理会非活动对象,copy数量仅仅取决为活动对象的数量。并且在copy的同时,整理了heap空间,即,to space的空间使用始终是连续的,内存使用效率得到提高。
缺点:划分from space和to space,内存的使用率是1/2。收集器必须复制所有的活动对象,这增加了程序等待时间。
5、generation算法(Generational Collector)
来自IBM的一组统计数据:98%的java对象,在创建之后不久就变成了非活动对象;只有2%的对象,会在长时间一直处于活动状态。
(1)young generation
年轻代分三个区。一个Eden区,两个Survivor区。大部分对象在 Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor区也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制到tenured generation。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时存在从Eden复制过来对象,和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor去过来的对象。而且,Survivor区总有一个是空的。
young generation的gc称为minor gc。经过数次minor gc,依旧存活的对象,将被移出young generation,移到tenured generation
(2)tenured generation
生命周期较长的对象,归入到tenured generation。一般是经过多次minor gc,还 依旧存活的对象,将移入到tenured generation。(当然,在minor gc中如果存活的对象的超过survivor的容量,放不下的对象会直接移入到tenured generation)
tenured generation的gc称为major gc,就是通常说的full gc。
采用compactiion算法。由于tenured generaion区域比较大,而且通常对象生命周期都比较长,compaction需要一定时间。所以这部分的gc时间比较长。
minor gc可能引发full gc。当eden+from space的空间大于tenured generation区的剩余空间时,会引发full gc。这是悲观算法,要确保eden+from space的对象如果都存活,必须有足够的tenured generation空间存放这些对象。
(3)permanent generation
该区域比较稳定,主要用于存放classloader信息,比如类信息和method信息。
对于spring hibernate这些需要动态类型支持的框架,这个区域需要足够的空间。(这部分空间应该存在于方法区而不是heap中)。
6、adaptive算法(Adaptive Collector)
在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。