扩增子测序中OTU表进行抽平的两种方式

A random rarefaction of sample reads according to a specific reads length (usually the smallest value) should be performed firstly for downstream analysis.

扩增子测序拿到OTU表之后通常会被要求进行抽平处理,这样去进行后续比较分析,测序量一致后续分析比较才有意义,但是这种方式的缺陷在于当样品测序量相差比较大时候,会造成数据的极大浪费,假设样品A测序量为3万条reads,样品B测序量10万条,抽平后样品B就会浪费7万条reads,当然抽平并不是唯一的解决途径,文献中也有通过像Deseq2这种方法去进行后续分析的,Deseq2有自己的标准化的方法,做过转录组的人应该大多都清楚,这里呢我就先说下前者--抽平的实现

Option 1 Vegan包

library(vegan)

otu = read.table('16s_OTU_Table.txt', header=T, sep="\t", quote = "", row.names=1, comment.char="",stringsAsFactors = FALSE)%>%select(-13) 
colSums(otu)
otu_rare = as.data.frame(t(rrarefy(t(otu), min(colSums(otu)))))
colSums(otu_rare)
图片.png

Option 2 Phyloseq包

library(phyloseq)
set.seed(123)#这种方法最好设置一个随机种子便于重复
otu1 = otu_table(otu, taxa_are_rows = T)
phyloseq = phyloseq(otu1)

#这种方法会自动去除一些低丰度的otu
rare.data = rarefy_even_depth(phyloseq,replace = TRUE)
#8OTUs were removed because they are no longer present in any sample after random subsampling
#查看抽平前后的变化
sample_sums(phyloseq)
sample_sums(rare.data)

#提取抽平后的otu表格 
rare.otu = rare.data@.Data %>%
  as.data.frame()
图片.png

可以看到通过phyloseq方法会过滤掉一下低丰度的OTU,所以通过这种方法进行抽平的话,最好set.seed一下,便于重复.
且看下被过滤掉的这8个OTU在各样品中的值如何

otu[setdiff(rownames(otu),rownames(rare.otu)),]
图片.png

en,确实蛮低的,删就删了吧!~~ 方法没有好坏,大家自主选择吧!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350