默认情况下,在block中访问的外部变量是复制过去的,即:写操作不对原变量生效。但是你可以加上 __block
来让其写操作生效,示例代码如下:
__block int a = 0;
void (^foo)(void) = ^{
a = 1;
};
foo(); //这里,a的值被修改为1
在 block 内部修改其外部变量,大家都知道要使用 __block 关键字,其原理简单的说就是:使用了 __blcok 之后,在 block 被 copy 到堆上的同时也会将捕获的外部变量 copy 到堆上,之后便可以在 block 内部对外部变量进行修改。具体情况下面分析。
无 __block 关键字的参数捕获
没有使用 __block 的关键字我们可以在 block 中使用但是不能修改,具体原因可以查看下以下源码。使用 clang 编译之后,有一个 __main_block_impl_0 的结构体,它就是 block 的 c++ 实现,它里面有一行 NSInteger a; 如果 block 中没有使用局部变量时,是没有这段代码的,同时其构造函数参数列表里面也多了个参数 a。
可以明显的看出这里的参数捕获只是完成了一次值得传递,当你在 block 中修改这个变量的时候,编译器就会报错。其实这里的变量 a, 与 block 外面的局部变量 a 已经不是同一个变量了,在 block 内部对其进行修改对外部没有任何影响。
int main(int argc, char * argv[]) {
@autoreleasepool {
NSInteger a = 10;
void (^blk)(void) = ^{printf("block\n, a = %ld",a);};
blk();
}
return 0;
}
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
NSInteger a;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, NSInteger _a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
NSInteger a = __cself->a; // bound by copy
printf("block\n, a = %ld",a);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
NSInteger a = 10;
void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a));
((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
}
return 0;
}
具有 __block 关键字的参数捕获
查看编译之后的代码,添加 __block 关键字之后,在 __main_block_impl_0 函数中可以看到出现一段代码 __Block_byref_a_0 *a; 变量 a 在被捕获之后被包装成为一个 __Block_byref_a_0 类型对象,__Block_byref_a_0 是一个结构体,具有 isa 指针,因此也是一个对象。
当block被copy到堆中时,拷贝辅助函数 __main_block_copy_0 会将__Block_byref_a_0 拷贝至堆中,所以即使局部变量所在堆被销毁,block依然能对堆中的局部变量进行操作。其中 __Block_byref_a_0 成员指针 __forwarding 用来指向它在堆中的拷贝,此时在栈上的变量的地址也指向堆,这样就保证了修改的对象始终是堆中的。
编译之后
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__Block_byref_a_0 *a; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
printf("block\n"); (a->__forwarding->a) = 10;}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
__attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0)};
;
void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
}
return 0;
}
在 block 内修改全局变量
对于全局变量来说,其存储实在静态数据存储区,在程序结束之前都不会被释放,在 block 中可以直接对其进行修改。
NSInteger a;
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
a = 10; printf("block\n, a = %ld",a);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
void (*blk)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
((void (*)(__block_impl *))((__block_impl *)blk)->FuncPtr)((__block_impl *)blk);
}
return 0;
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };
捕获变量之后 block 的变化(无 __block 关键字)
局部变量、静态局部变量、全局变量捕获:
局部变量:
__block_impl_0 实现中会增加一个成员变量,用来存储 block 外部变量的值,仅仅是一次值传递,在 block 内部对其操作会报错。
全局变量:
全局变量在 __block_impl_0 实现中并没有出现,因为全局变量存储在静态数据区,程序结束前并不会被销毁,block 可直接访问,因此在 __block_impl_0 结构体中没有体现。
局部静态变量:
__block_impl_0 结构体中会增加一个指针变量,在 _block_func_0 中通过局部变量的地址可以对其进行访问修改,但其作用域就是当前所在函数的作用域
扩展
Block的底层基本结构
void blockTest()
{
void (^block)(void) = ^{
NSLog(@"Hello World!");
};
block();
}
int main(int argc, char * argv[]) {
@autoreleasepool {
blockTest();
}
}
通过clang命令查看编译器是如何实现Block的,在终端输入clang -rewrite-objc main.m
,然后会在当前目录生成main.cpp
的C++文件,代码如下:
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_0048d2_mi_0);
}
static struct __blockTest_block_desc_0 {
size_t reserved;
size_t Block_size;
} __blockTest_block_desc_0_DATA = { 0, sizeof(struct __blockTest_block_impl_0)};
void blockTest()
{
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
int main(int argc, char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
blockTest();
}
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };
下面我们一个一个来看
__blockTest_block_impl_0
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
__blockTest_block_impl_0
是Block
的C++实现,是一个结构体,从命名可以看出表示blockTest
中的第一个(0
)Block
。通常包含两个成员变量__block_impl impl
,__blockTest_block_desc_0* Desc
和一个构造函数。
__block_impl
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
__block_impl也是一个结构体
- *isa:isa指针,指向一个类对象,有三种类型:_NSConcreteStackBlock、_NSConcreteGlobalBlock、_NSConcreteMallocBlock,本例中是_NSConcreteStackBlock类型。
- Flags:block 的负载信息(引用计数和类型信息),按位存储。
- Reserved:保留变量。
- *FuncPtr:一个指针,指向
Block
执行时调用的函数,也就是Block
需要执行的代码块。在本例中是__blockTest_block_func_0
函数。
__blockTest_block_desc_0
static struct __blockTest_block_desc_0 {
size_t reserved;
size_t Block_size;
} __blockTest_block_desc_0_DATA = { 0, sizeof(struct __blockTest_block_impl_0)};
__blockTest_block_desc_0
是一个结构体,包含两个成员变量:
- reserved:
Block
版本升级所需的预留区空间,在这里为0。 - Block_size:
Block
大小(sizeof(struct __blockTest_block_impl_0))
。
__blockTest_block_desc_0_DATA
是一个__blockTest_block_desc_0
的一个实例。
__blockTest_block_func_0
__blockTest_block_func_0
就是Block
的执行时调用的函数,参数是一个__blockTest_block_impl_0
类型的指针。
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_0048d2_mi_0);
}
blockTest
void blockTest()
{
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
第一部分,定义Block
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA));
我们看到block
变成了一个指针,指向一个通过__blockTest_block_impl_0
构造函数实例化的结构体__blockTest_block_impl_0
实例,__blockTest_block_impl_0
在初始化的时候需要两个个参数:
-
__blockTest_block_func_0
:Block
块的函数指针。 -
__blockTest_block_desc_0_DATA
:作为静态全局变量初始化__main_block_desc_0
的结构体实例指针。
第二部分,调用Block
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)
通过block->FuncPtr
指针找到__blockTest_block_func_0
函数并且转成(void (*)(__block_impl *))
类型。
((__block_impl *)block)
然后将block
作为参数传给这个函数调用。
Flags
在__block_impl
中我们看到Flags
,现在来详细讲一讲。
在这里Block_private.h可以看到Flags
的具体信息:
// Values for Block_layout->flags to describe block objects
enum {
BLOCK_DEALLOCATING = (0x0001), // runtime
BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
BLOCK_NEEDS_FREE = (1 << 24), // runtime
BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
BLOCK_IS_GC = (1 << 27), // runtime
BLOCK_IS_GLOBAL = (1 << 28), // compiler
BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
};
引用浅谈 block(1) - clang 改写后的 block 结构的解释:
也就是说,一般情况下,一个
block
的 flags 成员默认设置为 0。如果当block
需要Block_copy()
和Block_release
这类拷贝辅助函数,则会设置成1 << 25
,也就是BLOCK_HAS_COPY_DISPOSE
类型。可以搜索到大量讲述Block_copy
方法的博文,其中涉及到了BLOCK_HAS_COPY_DISPOSE
。
总结一下枚举类的用法,前 16 位即起到标记作用,又可记录引用计数:
- BLOCK_DEALLOCATING:释放标记。一般常用 BLOCK_NEEDS_FREE 做 位与 操作,一同传入 Flags ,告知该 block 可释放。
- BLOCK_REFCOUNT_MASK:一般参与判断引用计数,是一个可选用参数。
- BLOCK_NEEDS_FREE:通过设置该枚举位,来告知该 block 可释放。意在说明 block 是 heap block ,即我们常说的 _NSConcreteMallocBlock 。
- BLOCK_HAS_COPY_DISPOSE:是否拥有拷贝辅助函数(a copy helper function)。
- BLOCK_HAS_CTOR:是否拥有 block 析构函数(dispose function)。
- BLOCK_IS_GC:是否启用 GC 机制(Garbage Collection)。
- BLOCK_HAS_SIGNATURE:与 BLOCK_USE_STRET 相对,判断是否当前 block 拥有一个签名。用于 runtime 时动态调用。
截获auto变量值
我们看到直接在block
修改变量会提示错误,为什么呢?
void blockTest()
{
int num = 10;
void (^block)(void) = ^{
NSLog(@"%d",num);
};
num = 20;
block();
}
int main(int argc, char * argv[]) {
@autoreleasepool {
blockTest();
}
}
打印结果是10,clang改写后的代码如下:
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
int num;
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int _num, int flags=0) : num(_num) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
int num = __cself->num; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_3c2714_mi_0,num);
}
void blockTest()
{
int num = 10;
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA, num));
num = 20;
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
__blockTest_block_impl_0
多了一个成员变量int num;
,再看看构造函数__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int _num, int flags=0)
,可以看到第三个参数只是变量的值,这也就解释了为什么打印的是10,因为block
截获的是值。
使用static修饰变量
void blockTest()
{
static int num = 10;
void (^block)(void) = ^{
NSLog(@"%d",num);
num = 30;
};
num = 20;
block();
NSLog(@"%d",num);
}
可以在block
内部修改变量了,同时打印结果是20,30。clang改写后的代码如下:
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
int *num;
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int *_num, int flags=0) : num(_num) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
int *num = __cself->num; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_5a95f6_mi_0,(*num));
(*num) = 30;
}
void blockTest()
{
static int num = 10;
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA, &num));
num = 20;
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_5a95f6_mi_1,num);
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
__blockTest_block_impl_0
多了一个成员变量int *num;
,和上面不同的是,这次block
截获的是指针,所以可以在内部通过指针修改变量的值,同时在外部修改变量的值,block
也能"感知到"。那么为什么之前传递指针呢?因为变量是栈上,作用域是函数blockTest
内,那么有可能变量比block
先销毁,这时候block
再通过指针去访问变量就会有问题。而static
修饰的变量不会被销毁,也就不用担心。
全局变量
int num = 10;
void blockTest()
{
void (^block)(void) = ^{
NSLog(@"%d",num);
num = 30;
};
num = 20;
block();
NSLog(@"%d",num);
}
打印结果是20,30。clang改写后的代码如下:
int num = 10;
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_1875c6_mi_0,num);
num = 30;
}
非常简单,在初始化__blockTest_block_impl_0
并没有把num
作为参数,__blockTest_block_func_0
中也是直接访问全局变量。
总结:
变量类型 | 是否捕获到block内部 | 访问方式 |
---|---|---|
局部auto变量 | 是 | 值传递 |
局部static变量 | 是 | 指针传递 |
全局变量 | 否 | 直接访问 |
使用__block修饰变量
void blockTest()
{
__block int num = 10;
void (^block)(void) = ^{
NSLog(@"%d",num);
num = 30;
};
num = 20;
block();
NSLog(@"%d",num);
}
效果和使用static修饰变量一样,clang改写后的代码如下:
struct __Block_byref_num_0 {
void *__isa;
__Block_byref_num_0 *__forwarding;
int __flags;
int __size;
int num;
};
struct __blockTest_block_impl_0 {
struct __block_impl impl;
struct __blockTest_block_desc_0* Desc;
__Block_byref_num_0 *num; // by ref
__blockTest_block_impl_0(void *fp, struct __blockTest_block_desc_0 *desc, __Block_byref_num_0 *_num, int flags=0) : num(_num->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __blockTest_block_func_0(struct __blockTest_block_impl_0 *__cself) {
__Block_byref_num_0 *num = __cself->num; // bound by ref
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_018b76_mi_0,(num->__forwarding->num));
(num->__forwarding->num) = 30;
}
static void __blockTest_block_copy_0(struct __blockTest_block_impl_0*dst, struct __blockTest_block_impl_0*src) {_Block_object_assign((void*)&dst->num, (void*)src->num, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __blockTest_block_dispose_0(struct __blockTest_block_impl_0*src) {_Block_object_dispose((void*)src->num, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __blockTest_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __blockTest_block_impl_0*, struct __blockTest_block_impl_0*);
void (*dispose)(struct __blockTest_block_impl_0*);
} __blockTest_block_desc_0_DATA = { 0, sizeof(struct __blockTest_block_impl_0), __blockTest_block_copy_0, __blockTest_block_dispose_0};
void blockTest()
{
__attribute__((__blocks__(byref))) __Block_byref_num_0 num = {(void*)0,(__Block_byref_num_0 *)&num, 0, sizeof(__Block_byref_num_0), 10};
void (*block)(void) = ((void (*)())&__blockTest_block_impl_0((void *)__blockTest_block_func_0, &__blockTest_block_desc_0_DATA, (__Block_byref_num_0 *)&num, 570425344));
(num.__forwarding->num) = 20;
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_04_xwbq8q6n0p1dmhhd6y51_vbc0000gp_T_main_018b76_mi_1,(num.__forwarding->num));
}
哇,难受啊兄dei,怎么多出来这么多东西,没关系,慢慢分析。
__blockTest_block_impl_0
多出来一个成员变量__Block_byref_num_0 *num;
,我们看到经过__block
修饰的变量类型变成了结构体__Block_byref_num_0
,__blockTest_block_impl_0
多出来一个成员变量__Block_byref_num_0 *num;
,block
捕获的是__Block_byref_num_0
类型指针,
__Block_byref_num_0
我们看到__Block_byref_num_0
是一个结构体,并且有一个isa
,因此我们可以知道它其实就是一个对象。同时还有一个__Block_byref_a_0 *
类型的__forwarding
和num
,num
我们能猜到就是用来保存变量的值,__forwarding
就有一点复杂了,后面慢慢讲。
__blockTest_block_copy_0和__blockTest_block_dispose_0
__blockTest_block_copy_0
中调用的是_Block_object_assign
,__blockTest_block_dispose_0
中调用的是_Block_object_dispose
。
函数 | 调用时机 |
---|---|
__blockTest_block_copy_0 |
__block 变量结构体实例从栈拷贝到堆时 |
__blockTest_block_dispose_0 |
__block 变量结构体实例引用计数为0时 |
关于_Block_object_assign
和_Block_object_dispose
更详细代码可以在runtime.c 中查看。
BLOCK_FIELD_IS_BYREF
我们看到_Block_object_assign
和_Block_object_dispose
中都有个参数值为8,BLOCK_FIELD_IS_BYREF
类型,什么意思呢?在Block_private.h 中可以查看到:
// Runtime support functions used by compiler when generating copy/dispose helpers
// Values for _Block_object_assign() and _Block_object_dispose() parameters
enum {
// see function implementation for a more complete description of these fields and combinations
BLOCK_FIELD_IS_OBJECT = 3, // id, NSObject, __attribute__((NSObject)), block, ...
BLOCK_FIELD_IS_BLOCK = 7, // a block variable
BLOCK_FIELD_IS_BYREF = 8, // the on stack structure holding the __block variable
BLOCK_FIELD_IS_WEAK = 16, // declared __weak, only used in byref copy helpers
BLOCK_BYREF_CALLER = 128, // called from __block (byref) copy/dispose support routines.
};
-
BLOCK_FIELD_IS_OBJECT
:OC对象类型 -
BLOCK_FIELD_IS_BLOCK
:是一个block -
BLOCK_FIELD_IS_BYREF
:在栈上被__block
修饰的变量 -
BLOCK_FIELD_IS_WEAK
:被__weak
修饰的变量,只在Block_byref
管理内部对象内存时使用 -
BLOCK_BYREF_CALLER
:处理Block_byref
内部对象内存的时候会加的一个额外标记(告诉内部实现不要进行retain或者copy)
__blockTest_block_desc_0
我们可以看到它多了两个回调函数指针*copy
和*dispose
,这两个指针会被赋值为__main_block_copy_0
和__main_block_dispose_0
最后我们看到访问num
是这样的:
__Block_byref_num_0 *num = __cself->num; // bound by ref
(num->__forwarding->num) = 30;
下面就讲一讲为什么要这样。
Block的内存管理
在前面我们讲到__block_impl
指向的_NSConcreteStackBlock类型的类对象,其实总共有三种类型:
类型 | 存储区域 |
---|---|
_NSConcreteStackBlock | 栈 |
_NSConcreteGlobalBlock | 数据区 |
_NSConcreteMallocBlock | 堆 |
前面也讲到copy
和dispose
,在ARC环境下,有哪些情况编译器会自动将栈上的把Block
从栈上复制到堆上呢?
Block从栈中复制到堆 |
---|
调用Block的copy实例方法时 |
Block作为函数返回值返回时 |
在带有usingBlock的Cocoa方法或者GCD的API中传递Block时候 |
将block赋给带有__strong修饰符的id类型或者Block类型时 |
当Bock
从栈中复制到堆,__block
也跟着变化:
- 当
Block
在栈上时,__block
的存储域是栈,__block
变量被栈上的Block
持有。 - 当
Block
被复制到堆上时,会通过调用Block
内部的copy
函数,copy函数内部会调用_Block_object_assign
函数。此时__block
变量的存储域是堆,__block
变量被堆上的Block
持有。 - 当堆上的
Block
被释放,会调用Block
内部的dispose
,dispose
函数内部会调用_Block_object_dispose
,堆上的__block
被释放。
- 当多个栈上的
Block
使用栈上的__block
变量,__block
变量被栈上的多个Block
持有。 - 当
Block0
被复制到堆上时,__block
也会被复制到堆上,被堆上Block0
持有。Block1
仍然持有栈上的__block
,原栈上__block
变量的__forwarding
指向拷贝到堆上之后的__block
变量。 - 当
Block1
也被复制到堆上时,堆上的__block
被堆上的Block0
和Block1
只有,并且__block
的引用计数+1。 - 当堆上的
Block
都被释放,__block
变量结构体实例引用计数为0,调用_Block_object_dispose
,堆上的__block
被释放。
下图是描述__forwarding
变化。这也就能解释__forwarding
存在的意义:
__forwarding 保证在栈上或者堆上都能正确访问对应变量
int main(int argc, char * argv[]) {
int num = 10;
NSLog(@"%@",[^{
NSLog(@"%d",num);
} class]);
void (^block)(void) = ^{
NSLog(@"%d",num);
};
NSLog(@"%@",[block class]);
}
打印结果:
2019-05-04 18:40:48.470228+0800 BlockTest[35824:16939613] __NSStackBlock__
2019-05-04 18:40:48.470912+0800 BlockTest[35824:16939613] __NSMallocBlock__
我们可以看到第一个Block
没有赋值给__strong
指针,而第二个Block
没有赋值给__strong
指针,所以第一个在栈上,而第二个在堆上。
Block截获对象
int main(int argc, char * argv[]) {
{
Person *person = [[Person alloc] init];
person.name = @"roy";
NSLog(@"%@",[^{
NSLog(@"%@",person.name);
} class]);
NSLog(@"%@",@"+++++++++++++");
}
NSLog(@"%@",@"------------");
}
打印结果:
@interface Person : NSObject
@property (nonatomic, strong) NSString *name;
@end
@implementation Person
- (void)dealloc {
NSLog(@"-------dealloc-------");
}
@end
typedef void(^Block)(void);
int main(int argc, char * argv[]) {
{
Person *person = [[Person alloc] init];
person.name = @"roy";
NSLog(@"%@",[^{
NSLog(@"%@",person.name);
} class]);
NSLog(@"%@",@"+++++++++++++");
}
NSLog(@"%@",@"------------");
}
我们看到当Block
内部访问了对象类型的auto对象时,如果Block
是在栈上,将不会对auto对象产生强引用。
auto Strong 对象
typedef void(^Block)(void);
int main(int argc, char * argv[]) {
Block block;
{
Person *person = [[Person alloc] init];
person.name = @"roy";
block = ^{
NSLog(@"%@",person.name);
};
person.name = @"David";
NSLog(@"%@",@"+++++++++++++");
}
NSLog(@"%@",@"------------");
block ();
}
打印结果是
2019-05-04 17:46:27.083280+0800 BlockTest[33745:16864251] +++++++++++++
2019-05-04 17:46:27.083934+0800 BlockTest[33745:16864251] ------------
2019-05-04 17:46:27.084018+0800 BlockTest[33745:16864251] David
2019-05-04 17:46:27.084158+0800 BlockTest[33745:16864251] -------dealloc-------
我们看到是先打印的david
再调用Person
的析构方法dealloc
,在终端输入clang -rewrite-objc -fobjc-arc -fobjc-runtime=macosx-10.13 main.m -fobjc-arc
,clang在ARC环境下改写后的代码如下:
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
Person *__strong person;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, Person *__strong _person, int flags=0) : person(_person) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
我们看到__main_block_impl_0
中的Person *__strong person;
成员变量。
Block
截获了auto对象,当Block
被拷贝到堆上,Block
强引用auto对象,这就能解释了为什么超出了person
的作用域,person
没有立即释放,当Block
释放之后,会自动去掉对该对象的强引用,该对象就会被释放了。
auto Weak 对象
typedef void(^Block)(void);
int main(int argc, char * argv[]) {
Block block;
{
Person *person = [[Person alloc] init];
person.name = @"roy";
__weak Person *weakPerson = person;
block = ^{
NSLog(@"%@",weakPerson.name);
};
weakPerson.name = @"David";
NSLog(@"%@",@"+++++++++++++");
}
NSLog(@"%@",@"------------");
block ();
}
打印结果是
2019-05-04 17:49:38.858554+0800 BlockTest[33856:16869229] +++++++++++++
2019-05-04 17:49:38.859218+0800 BlockTest[33856:16869229] -------dealloc-------
2019-05-04 17:49:38.859321+0800 BlockTest[33856:16869229] ------------
2019-05-04 17:49:38.859403+0800 BlockTest[33856:16869229] (null)
直接在终端输入clang -rewrite-objc main.m
会报cannot create __weak reference because the current deployment target does not support weak ref
错误。需要用clang -rewrite-objc -fobjc-arc -fobjc-runtime=macosx-10.13 main.m
,-fobjc-arc
代表当前是ARC环境 -fobjc-runtime=macosx-10.13
:代表当前运行时环境,缺一不可,clang之后的代码:
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
Person *__weak weakPerson;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, Person *__weak _weakPerson, int flags=0) : weakPerson(_weakPerson) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
我们看到__main_block_impl_0
中的Person *__weak weakPerson;
成员变量。
总结:
- 当
Block
内部访问了对象类型的auto对象时,如果Block
是在栈上,将不会对auto对象产生强引用。 - 如果block被拷贝到堆上,会调用
Block
内部的copy函数,copy函数内部会调用_Block_object_assign
函数,_Block_object_assign
会根据auto对象的修饰符(__strong
,__weak
,__unsafe_unretained
)做出相应的操作,当使用的是__strong
时,将会对person
对象的引用计数加1,当为__weak
时,引用计数不变。 - 如果
Block
从对上移除,会调用block内部的dispose
函数,内部会调用_Block_object_dispose
函数,这个函数会自动释放引用的auto
对象。
Block循环引用
@interface Person : NSObject
@property (nonatomic, strong) NSString *name;
@property (nonatomic, copy) void (^block)(void);
- (void)testReferenceSelf;
@end
@implementation Person
- (void)testReferenceSelf {
self.block = ^ {
NSLog(@"self.name = %s", self.name.UTF8String);
};
self.block();
}
- (void)dealloc {
NSLog(@"-------dealloc-------");
}
@end
int main(int argc, char * argv[]) {
Person *person = [[Person alloc] init];
person.name = @"roy";
[person testReferenceSelf];
}
打印结果是self.name = roy
,Person
的析构方法dealloc
并没有执行,这是典型的循环引用,下面我们研究研究为啥会循环引用。clang改写后的代码如下:
struct __Person__testReferenceSelf_block_impl_0 {
struct __block_impl impl;
struct __Person__testReferenceSelf_block_desc_0* Desc;
Person *const __strong self;
__Person__testReferenceSelf_block_impl_0(void *fp, struct __Person__testReferenceSelf_block_desc_0 *desc, Person *const __strong _self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void _I_Person_testReferenceSelf(Person * self, SEL _cmd) {
((void (*)(id, SEL, void (*)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock:"), ((void (*)())&__Person__testReferenceSelf_block_impl_0((void *)__Person__testReferenceSelf_block_func_0, &__Person__testReferenceSelf_block_desc_0_DATA, self, 570425344)));
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block"))();
}
我们看到本来Person中testReferenceSelf
方法是没有参数的,但是转成C++之后多出来两个参数:* self
和_cmd
,再看看__Person__testReferenceSelf_block_impl_0
中多出来一个成员变量Person *const __strong self;
,因此我们知道Person中block
捕获了self
,block
强引用self
,同时self
也强引用block
,因此形成循环引用。
Weak解除循环引用
@implementation Person
- (void)testReferenceSelf {
__weak typeof(self) weakself = self;
self.block = ^ {
__strong typeof(self) strongself = weakself;
NSLog(@"self.name = %s", strongself.name.UTF8String);
};
self.block();
}
- (void)dealloc {
NSLog(@"-------dealloc-------");
}
@end
打印结果:
2019-05-04 19:27:48.274358+0800 BlockTest[37426:17007507] self.name = roy
2019-05-04 19:27:48.275016+0800 BlockTest[37426:17007507] -------dealloc-------
我们看到Person对象被正常释放了,说明不存在循环引用,为什么呢?clang改写后的代码如下:
struct __Person__testReferenceSelf_block_impl_0 {
struct __block_impl impl;
struct __Person__testReferenceSelf_block_desc_0* Desc;
Person *const __weak weakself;
__Person__testReferenceSelf_block_impl_0(void *fp, struct __Person__testReferenceSelf_block_desc_0 *desc, Person *const __weak _weakself, int flags=0) : weakself(_weakself) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void _I_Person_testReferenceSelf(Person * self, SEL _cmd) {
__attribute__((objc_ownership(weak))) typeof(self) weakself = self;
((void (*)(id, SEL, void (*)()))(void *)objc_msgSend)((id)self, sel_registerName("setBlock:"), ((void (*)())&__Person__testReferenceSelf_block_impl_0((void *)__Person__testReferenceSelf_block_func_0, &__Person__testReferenceSelf_block_desc_0_DATA, weakself, 570425344)));
((void (*(*)(id, SEL))())(void *)objc_msgSend)((id)self, sel_registerName("block"))();
}
可以看到__Person__testReferenceSelf_block_impl_0
结构体中weakself成员是一个__weak
修饰的Person类型对象,也就是说__Person__testReferenceSelf_block_impl_0
对Person的依赖是弱依赖。weak修饰变量是在runtime中进行处理的,在Person对象的Dealloc方法中会调用weak引用的处理方法,从weak_table中寻找弱引用的依赖对象,进行清除处理。
最后
好了,关于Block就写到这里了,花了五一的三天时间解决了一个基础知识点,如释重负,写的真心累。
参考文章
浅谈 block(1) - clang 改写后的 block 结构
Objc Block实现分析
(四)Block之 __block修饰符及其存储域
(三)Block之截获变量和对象
关于Block再啰嗦几句
__block变量存储域
Block学习⑤--block对对象变量的捕获
浅谈Block实现原理及内存特性之三: copy过程分析
iOS底层原理总结 - 探寻block的本质(一)
Block技巧与底层解析、谈 Objective-C block 的实现