64. Minimum Path Sum 最小路径和

题目链接
tag:

  • Medium;
  • DP;

question:
  Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note:You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

思路:
  这道题需要用动态规划Dynamic Programming来做,这算是DP问题中比较简单的一类,维护一个二维的dp数组,其中dp[i][j]表示当前位置的最小路径和,递推式也容易写出来 dp[i][j] = grid[i][j] + min(dp[i - 1][j],dp[i][j-1]) 反正难度不算大,代码如下:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        int m = grid.size(), n = grid[0].size();
        int dp[m][n];
        dp[0][0] = grid[0][0];
        for (int i=1; i<m; ++i) dp[i][0] = grid[i][0] +dp[i-1][0];
        for (int i=1; i<n; ++i) dp[0][i] = grid[0][i] + dp[0][i-1];
        for (int i=1; i<m; ++i) {
            for(int j=1; j<n; ++j)
                dp[i][j] = grid[i][j] + min(dp[i-1][j], dp[i][j-1]);
        }
        return dp[m-1][n-1];
    }
};
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。