最大似然估计理解

转载自:http://hi.baidu.com/hi9394/blog/item/7e5132638102aa760c33faf2.html
http://blog.csdn.net/tianguokaka/article/details/7704036
但博客被作者清空了,,网上的都是转载的,有些人说自己原创,真的不要脸

先验概率、后验概率与似然估计

条件概率: P(A|B)表示在B事件发生的情况下,A事件发生的概率

简单一点:
先验概率 : 事情还没有发生,要求这件事情发生的可能性的大小
后验概率 : 事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小

笼统一点:
先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因求果”问题中的“因”出现。
后验概率是指在得到“结果”的信息后重新修正的概率,如贝叶斯公式中的,是“执果寻因”问题中的“因”。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。

幽默一点:

先验概率和后验概率

教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了

假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。

堵车的概率就是先验概率

那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。

如果我们已经出了门,然后遇到了堵车,那么我们想算一下堵车时由交通事故引起的概率有多大,

那这个就叫做后验概率 (也是条件概率,但是通常习惯这么说)。也就是P(交通事故|堵车)。这是有果求因。

下面的定义摘自百度百科:

先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.

后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因".

那么这两个概念有什么用呢?

最大似然估计
我们来看一个例子。

有一天,有个病人到医院看病。他告诉医生说自己头痛,然后医生根据自己的经验判断出他是感冒了,然后给他开了些药回去吃。

有人肯定要问了,这个例子看起来跟我们要讲的最大似然估计有啥关系啊。

关系可大了,事实上医生在不知不觉中就用到了最大似然估计(虽然有点牵强,但大家就勉为其难地接受吧_)。

怎么说呢?

大家知道,头痛的原因有很多种啊,比如感冒,中风,脑溢血...(脑残>_<这个我可不知道会不会头痛,还有那些看到难题就头痛的病人也不在讨论范围啊!)。

那么医生凭什么说那个病人就是感冒呢?哦,医生说这是我从医多年的经验啊。

咱们从概率的角度来研究一下这个问题。

其实医生的大脑是这么工作的,

他计算了一下

P(感冒|头痛)(头痛由感冒引起的概率,下面类似)

P(中风|头痛)

P(脑溢血|头痛)

...

然后这个计算机大脑发现,P(感冒|头痛)是最大的,因此就认为呢,病人是感冒了。看到了吗?这个就叫最大似然估计(Maximum likelihood estimation,MLE) 。

咱们再思考一下,P(感冒|头痛),P(中风|头痛),P(脑溢血|头痛)是先验概率还是后验概率呢?

没错,就是后验概率。看到了吧,后验概率可以用来看病(只要你算得出来,呵呵)。

事实上,后验概率起了这样一个用途,根据一些发生的事实(通常是坏的结果),分析结果产生的最可能的原因,然后才能有针对性地去解决问题。

那么先验概率有啥用呢?

我们来思考一下,P(脑残|头痛)是怎么算的。

P(脑残|头痛)=头痛的人中脑残的人数/头痛的人数

头痛的样本倒好找,但是头痛的人中脑残的人数就不好调查了吧。如果你去问一个头痛的人你是不是脑残了,我估计那人会把你拍飞吧。

接下来先验概率就派上用场了。

根据贝叶斯公式 ,

P(B|A)=P(A|B)P(B)/P(A)

我们可以知道

P(脑残|头痛)=P(头痛|脑残)P(脑残)/P(头痛)

注意,(头痛|脑残)是先验概率,那么利用贝叶斯公式我们就可以利用先验概率把后验概率算出来了。

P(头痛|脑残)=脑残的人中头痛的人数/脑残的人数

这样只需要我们去问脑残的人你头痛吗,明显很安全了。

(你说脑残的人数怎么来的啊,那我们就假设我们手上有一份传说中的脑残名单吧。那份同学不要吵,我没说你在名单上啊。

再说调查脑残人数的话咱就没必要抓着一个头痛的人问了。起码问一个心情好的人是否脑残比问一个头痛的人安全得多)

我承认上面的例子很牵强,不过主要是为了表达一个意思。后验概率在实际中一般是很难直接计算出来的,相反先验概率就容易多了。因此一般会利用先验概率来计算后验概率。

似然函数与最大似然估计

下面给出似然函数跟最大似然估计的定义。

我们假设f是一个概率密度函数,那么


2019080213403178.png

是一个条件概率密度函数(θ 是固定的)

而反过来


20190802134039231.png

,叫做似然函数 (x是固定的)。

一般把似然函数写成


8b5ed7ab9d3ffbd2705ef1809dad54bc.png

θ是因变量。

而最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。

意思就是呢,当后验概率最大时θ的大小。也就是说要求最有可能的原因。

由于对数函数不会改变大小关系,有时候会将似然函数求一下对数,方便计算。

例子:

我们假设有三种硬币,他们扔到正面的概率分别是1/3,1/2,2/3。我们手上有一个硬币,但是我们并不知道这是哪一种。因此我们做了一下实验,我们扔了80次,有49次正面,31次背面。那么这个硬币最可能是哪种呢?我们动手来算一下。这里θ的定义域是{1/3,1/2,2/3}


aHR0cDovL2hpcGhvdG9zLmJhaWR1LmNvbS9oaTkzOTQvcGljL2l0ZW0vOGFjOGFmMDM5NzA3YmEyZTM4MTJiYjU5LmpwZw.jpg

当p=2/3时,似然函数的值最大,因此呢,这个硬币很可能是2/3。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容