4-Zookeeper 原理介绍

Zookeeper 原理

Zookeeper的基本概念

角色

Zookeeper中的角色主要有以下三类,如下表所示:

image.png

系统模型如图所示:

image.png

设计目的

  1. 最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

  2. 可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

  3. 实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

  4. 等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

  5. 原子性:更新只能成功或者失败,没有中间状态。

  6. 顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

ZooKeeper的工作原理

Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

每个Server在工作过程中有三种状态:

  • LOOKING:当前Server不知道leader是谁,正在搜寻

  • LEADING:当前Server即为选举出来的leader

  • FOLLOWING:leader已经选举出来,当前Server与之同步

选主流程

当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:

  1. 选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;

  2. 选举线程首先向所有Server发起一次询问(包括自己);

  3. 选举线程收到回复后,验证是否是自己发起的询问 (验证zxid是否一致),然后获取对方的id (myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息 (id,zxid),并将这些信息存储到当次选举的投票记录表中;

  4. 收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;

  5. 线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数,设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。

通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1。

每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:

image.png

fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:

image.png

同步流程

选完leader以后,zk就进入状态同步过程。

  1. leader等待server连接;

  2. Follower连接leader,将最大的zxid发送给leader;

  3. Leader根据follower的zxid确定同步点;

  4. 完成同步后通知follower 已经成为uptodate状态;

  5. Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。

流程图如下所示:

image.png

工作流程

Leader工作流程

Leader主要有三个功能:

  1. 恢复数据;

  2. 维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;

  3. Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。

Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能:

image.png
Follower工作流程

Follower主要有四个功能:

  1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

  2. 接收Leader消息并进行处理;

  3. 接收Client的请求,如果为写请求,发送给Leader进行投票;

  4. 返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

  1. PING消息: 心跳消息;

  2. PROPOSAL消息:Leader发起的提案,要求Follower投票;

  3. COMMIT消息:服务器端最新一次提案的信息;

  4. UPTODATE消息:表明同步完成;

  5. REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;

  6. SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。

image.png

对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。

ZooKeeper在大型分布式系统中的应用

前面已经介绍了ZooKeeper的典型应用场景。本节将以常见的大数据产品Hadoop和HBase为例来介绍ZooKeeper在其中的应用,帮助大家更好地理解ZooKeeper的分布式应用场景。

ZooKeeper在Hadoop中的应用

在Hadoop中,ZooKeeper主要用于实现HA (Hive Availability),包括HDFS的NamaNode和YARN的ResourceManager的HA。同时,在YARN中,ZooKeepr还用来存储应用的运行状态。HDFS的NamaNode和YARN的ResourceManager利用ZooKeepr实现HA的原理是一样的,所以本节以YARN为例来介绍。

image.png

从上图可以看出,YARN主要由ResourceManager(RM)、NodeManager(NM)、ApplicationMaster(AM)和Container四部分组成。其中最核心的就是ResourceManager。

ResourceManager负责集群中所有资源的统一管理和分配,同时接收来自各个节点(NodeManager)的资源汇报信息,并把这些信息按照一定的策略分配给各个应用程序(Application Manager),其内部维护了各个应用程序的ApplicationMaster信息、NodeManager信息以及资源使用信息等。

为了实现HA,必须有多个ResourceManager并存(一般就两个),并且只有一个ResourceManager处于Active状态,其他的则处于Standby状态,当Active节点无法正常工作(如机器宕机或重启)时,处于Standby的就会通过竞争选举产生新的Active节点。

主备切换

下面我们就来看看YARN是如何实现多个ResourceManager之间的主备切换的。

1.创建锁节点

在ZooKeeper上会有一个/yarn-leader-election/appcluster-yarn的锁节点,所有的ResourceManager在启动的时候,都会去竞争写一个Lock子节点:/yarn-leader-election/appcluster-yarn/ActiveBreadCrumb,该节点是临时节点。ZooKeepr能够为我们保证最终只有一个ResourceManager能够创建成功。创建成功的那个ResourceManager就切换为Active状态,没有成功的那些ResourceManager则切换为Standby状态。

[zk: localhost:2181(CONNECTED) 16] get /yarn-leader-election/appcluster-yarn/ActiveBreadCrumb

appcluster-yarnrm2
cZxid = 0x1b00133dc0
ctime = Tue Jan 03 15:44:42 CST 2017
mZxid = 0x1f00000540
mtime = Sat Jan 07 00:50:20 CST 2017
pZxid = 0x1b00133dc0
cversion = 0
dataVersion = 28
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 22
numChildren = 0

可以看到此时集群中ResourceManager2为Active。

2.注册Watcher监听

所有Standby状态的ResourceManager都会向/yarn-leader-election/appcluster-yarn/ActiveBreadCrumb节点注册一个节点变更的Watcher监听,利用临时节点的特性,能够快速感知到Active状态的ResourceManager的运行情况。

3.主备切换

当Active状态的ResourceManager出现诸如宕机或重启的异常情况时,其在ZooKeeper上连接的客户端会话就会失效,因此/yarn-leader-election/appcluster-yarn/ActiveBreadCrumb节点就会被删除。此时其余各个Standby状态的ResourceManager就都会接收到来自ZooKeeper服务端的Watcher事件通知,然后会重复进行步骤1的操作。

以上就是利用ZooKeeper来实现ResourceManager的主备切换的过程,实现了ResourceManager的HA。

HDFS中NameNode的HA的实现原理跟YARN中ResourceManager的HA的实现原理相同。其锁节点为/hadoop-ha/mycluster/ActiveBreadCrumb

ResourceManager状态存储

在 ResourceManager 中,RMStateStore 能够存储一些 RM 的内部状态信息,包括 Application 以及它们的 Attempts 信息、Delegation Token 及 Version Information 等。需要注意的是,RMStateStore 中的绝大多数状态信息都是不需要持久化存储的,因为很容易从上下文信息中将其重构出来,如资源的使用情况。在存储的设计方案中,提供了三种可能的实现,分别如下。

  • 基于内存实现,一般是用于日常开发测试。
  • 基于文件系统的实现,如HDFS。
  • 基于ZooKeeper实现。

由于这些状态信息的数据量都不是很大,因此Hadoop官方建议基于ZooKeeper来实现状态信息的存储。在ZooKeepr上,ResourceManager 的状态信息都被存储在/rmstore这个根节点下面。

[zk: localhost:2181(CONNECTED) 28] ls /rmstore/ZKRMStateRoot
[RMAppRoot, AMRMTokenSecretManagerRoot, EpochNode, RMDTSecretManagerRoot, RMVersionNode]

RMAppRoot 节点下存储的是与各个 Application 相关的信息,RMDTSecretManagerRoot 存储的是与安全相关的 Token 等信息。每个 Active 状态的 ResourceManager 在初始化阶段都会从 ZooKeeper 上读取到这些状态信息,并根据这些状态信息继续进行相应的处理。

小结:

ZooKeepr在Hadoop中的应用主要有:

  1. HDFS中NameNode的HA和YARN中ResourceManager的HA。
  1. 存储RMStateStore状态信息

ZooKeeper在HBase中的应用

HBase主要用ZooKeeper来实现HMaster选举与主备切换、系统容错、RootRegion管理、Region状态管理和分布式SplitWAL任务管理等。

HMaster选举与主备切换

HMaster选举与主备切换的原理和HDFS中NameNode及YARN中ResourceManager的HA原理相同。

系统容错

当HBase启动时,每个RegionServer都会到ZooKeeper的/hbase/rs节点下创建一个信息节点(下文中,我们称该节点为"rs状态节点"),例如/hbase/rs/[Hostname],同时,HMaster会对这个节点注册监听。当某个 RegionServer 挂掉的时候,ZooKeeper会因为在一段时间内无法接受其心跳(即 Session 失效),而删除掉该 RegionServer 服务器对应的 rs 状态节点。与此同时,HMaster 则会接收到 ZooKeeper 的 NodeDelete 通知,从而感知到某个节点断开,并立即开始容错工作。

HBase为什么不直接让HMaster来负责RegionServer的监控呢?如果HMaster直接通过心跳机制等来管理RegionServer的状态,随着集群越来越大,HMaster的管理负担会越来越重,另外它自身也有挂掉的可能,因此数据还需要持久化。在这种情况下,ZooKeeper就成了理想的选择。

RootRegion管理

对应HBase集群来说,数据存储的位置信息是记录在元数据region,也就是RootRegion上的。每次客户端发起新的请求,需要知道数据的位置,就会去查询RootRegion,而RootRegion自身位置则是记录在ZooKeeper上的(默认情况下,是记录在ZooKeeper的/hbase/meta-region-server节点中)。当RootRegion发生变化,比如Region的手工移动、重新负载均衡或RootRegion所在服务器发生了故障等是,就能够通过ZooKeeper来感知到这一变化并做出一系列相应的容灾措施,从而保证客户端总是能够拿到正确的RootRegion信息。

Region管理

HBase里的Region会经常发生变更,这些变更的原因来自于系统故障、负载均衡、配置修改、Region分裂与合并等。一旦Region发生移动,它就会经历下线(offline)和重新上线(online)的过程。

在下线期间数据是不能被访问的,并且Region的这个状态变化必须让全局知晓,否则可能会出现事务性的异常。对于大的HBase集群来说,Region的数量可能会多达十万级别,甚至更多,这样规模的Region状态管理交给ZooKeeper来做也是一个很好的选择。

分布式SplitWAL任务管理

当某台RegionServer服务器挂掉时,由于总有一部分新写入的数据还没有持久化到HFile中,因此在迁移该RegionServer的服务时,一个重要的工作就是从WAL中恢复这部分还在内存中的数据,而这部分工作最关键的一步就是SplitWAL,即HMaster需要遍历该RegionServer服务器的WAL,并按Region切分成小块移动到新的地址下,并进行日志的回放(replay)。

由于单个RegionServer的日志量相对庞大(可能有上千个Region,上GB的日志),而用户又往往希望系统能够快速完成日志的恢复工作。因此一个可行的方案是将这个处理WAL的任务分给多台RegionServer服务器来共同处理,而这就又需要一个持久化组件来辅助HMaster完成任务的分配。当前的做法是,HMaster会在ZooKeeper上创建一个SplitWAL节点(默认情况下,是/hbase/SplitWAL节点),将"哪个RegionServer处理哪个Region"这样的信息以列表的形式存放到该节点上,然后由各个RegionServer服务器自行到该节点上去领取任务并在任务执行成功或失败后再更新该节点的信息,以通知HMaster继续进行后面的步骤。ZooKeeper在这里担负起了分布式集群中相互通知和信息持久化的角色。

小结:

以上就是一些HBase中依赖ZooKeeper完成分布式协调功能的典型场景。但事实上,HBase对ZooKeepr的依赖还不止这些,比如HMaster还依赖ZooKeeper来完成Table的enable/disable状态记录,以及HBase中几乎所有的元数据存储都是放在ZooKeeper上的。

由于ZooKeeper出色的分布式协调能力及良好的通知机制,HBase在各版本的演进过程中越来越多地增加了ZooKeeper的应用场景,从趋势上来看两者的交集越来越多。HBase中所有对ZooKeeper的操作都封装在了org.apache.hadoop.hbase.zookeeper这个包中,感兴趣的同学可以自行研究。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容