Java设计模式单例模式(Singleton)用法解析

单例模式的应用场景:

单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例。并提供一个全局反访问点。单例模式是创建型模式。单例模式在生活中应用也很广泛,比如公司CEO只有一个,部门经理只有一个等。JAVA中ServletCOntext,ServetContextCOnfig等,还有spring中ApplicationContext应用上下文对象,SessionFactory,数据库连接池对象等。使用单例模式可以将其常驻于内存,可以节约更多资源。

写法:

1:懒汉模式(线程不安全)

/**
 * 线程不安全的懒汉式单利模式
 * 
 * Created by gan on 2019/11/17 17:33.
 */
public class LazySingleton {
  private static LazySingleton instance;

  //构造方法私有化
  private LazySingleton() {
  }

  public static LazySingleton getInstance() {
    if (instance != null) {
      instance = new LazySingleton();
    }
    return instance;
  }
}

上面的代码,提供一个静态对象instance,构造函数私有化防止外部创建对象,提供一个静态的getInstance方法来给访问者一个单例对象。这种写法的缺点就是没有考虑到线程安全问题,当多个访问者同时访问的时候很有可能创建多个对象。之所以叫懒汉式,是因为这种写法是使用的时候才创建,起到了懒加载Lazy loading的作用,实际开发中不建议采用这种写法。

2:线程安全的懒汉式(加锁)

/**
 * 线程安全的懒汉式单利模式
 * 
 * Created by gan on 2019/11/17 17:33.
 */
public class LazySingleton {
  private static LazySingleton instance;

  //构造方法私有化
  private LazySingleton() {
  }

  public synchronized static LazySingleton getInstance() {
    if (instance != null) {
      instance = new LazySingleton();
    }
    return instance;
  }
}

这种写法就是在第一种的基础上添加了synchronized关键字保证了线程安全。这种写法在并发高的时候虽然保证了线程安全,但是效率很低,高并发的时候所有访问的线程都要排队等待,所以实际开发中也不建议采用。

3:恶汉式(线程安全)

/**
 * 饿汉式(线程安全)
 * Created by gan on 2019/10/28 22:52.
 */
public class HungrySigleton {

  public static final HungrySigleton instance = new HungrySigleton();

  private HungrySigleton(){}

  public static HungrySigleton getInstance(){
    return instance;
  }
}

直接在运行(加载)这个类的时候创建了对象,之后直接访问。显然这种方式没有起到Lazy loading的效果。但是是线程安全的,实际开发中还是比较常用。

4:静态内部类(线程安全)

/**
 * 静态内部类方式
 * Created by gan on 2019/11/17 17:46.
 */
public class StaticInnerClassSingleton {

  //构造方法私有化
  private StaticInnerClassSingleton() {}

  //内部类
  private static class HolderInnerClass {
    //需要提供单利对象的外部类作为静态属性加载的时候就初始化
    private static StaticInnerClassSingleton instance = new StaticInnerClassSingleton();
  }

  //对外暴漏访问点
  public static StaticInnerClassSingleton getInstance() {
    return HolderInnerClass.instance;
  }
}

这种内部类跟饿汉式单例有很多相似的地方,相比饿汉式单例模式的区别也是好处在于:静态内部类不在单例类加载时就加载,而是在调用getInstance()方法的时候才进行加载,达到了类似于懒汉式的效果,而且这种方法又是线程安全的。实际开发中也建议采用。

5:枚举方法单例(线程安全)

/**
 * 枚举单利模式
 * Created by gan on 2019/11/17 17:57.
 */
public enum EnumSingleton {
  INSTANCE;

  public void otherMetthod() {
    System.out.println("需要单利对象调用的方法。。。");
  }
}

Effective Java作者Josh Bloch提倡的方式,好处有如下:

1:自由串行化。

2:保证了一个实例

3:线程安全

这种方式防止了单例模式被破坏,而且简洁写法简单,而且绝对的线程安全,但是有个缺点就是不能继承。

6:双重检查法(通常线程安全,低概率不安全)

/**
 * Double check
 * Created by gan on 2019/11/17 18:03.
 */
public class DoubleCheckSingleton {
  private static DoubleCheckSingleton instance;

  private DoubleCheckSingleton() {}

  public static DoubleCheckSingleton getInstance() {
    if (instance == null) {
      synchronized (DoubleCheckSingleton.class) {
        if (instance == null) {
          instance = new DoubleCheckSingleton();
        }
      }
    }
    return instance;
  }
}

上面的这种写法在并发极高的时候也可能会出现问题(当然这种概率非常小,但是毕竟还是有的嘛),解决的方案就是给instance的声明加上volatile关键字即可。于是就出现了下面第7总写法。

7:Double check(volatile)

/**
 * Double check volatile
 * Created by gan on 2019/11/17 18:03.
 */
public class DoubleCheckSingleton {
  private volatile static DoubleCheckSingleton instance;

  private DoubleCheckSingleton() {}

  public static DoubleCheckSingleton getInstance() {
    if (instance == null) {
      synchronized (DoubleCheckSingleton.class) {
        if (instance == null) {
          instance = new DoubleCheckSingleton();
        }
      }
    }
    return instance;
  }
}

volatile关键字的其中一个作用就是禁止指令重排序,把instance声明volatile后,对它的操作就会有一个内存屏障(什么是内存屏障?),这样在赋值完成之前,就不会调用读操作。这里具体的原因网上也是众说纷纭,这里不进行具体阐述。

8:ThreadLocal实现单例模式(线程安全)

/**
 * ThreadLocal实现单利模式
 * Created by gan on 2019/11/17 18:17.
 */
public class ThreadLocalSingleton {

  private static final ThreadLocal<ThreadLocalSingleton> threadLocal = new ThreadLocal() {
    @Override
    protected ThreadLocalSingleton initialValue() {
      return new ThreadLocalSingleton();
    }
  };

  private ThreadLocalSingleton(){}

  public static ThreadLocalSingleton getInstance(){
    return threadLocal.get();
  }
}

ThreadLocal会为每个线程提供一个独立的变量副本,从而隔离了多个线程堆数据的访问冲突。对于多线程资源共享问题,同步机制采用了“以时间换空间”的方式,而ThreadLocal则采用了“以空间换时间”的方式(主要就是避免了加锁排队)。 前者提供一份变量,让不同的线程排队访问,而后者为每一个线程提供了一份变量,因此可以同时访问而互不影响。但是实际是创建了多个单例对象的。

单例模式的破坏

1:序列化破坏

一个对象创建好以后,有时候需要将对象序列化然后写入磁盘。下次在从磁盘中读取并反序列化,将其转化为内存对象。反序列化后的对象会重新分配内存,即创建型的对象。这样就违背了单例模式的初衷。解决这种方式的方法就是在单例类中新增一个 private Object readResolve();方法即可,具体原因可以看看序列化和反序列化的源码。

2:反射

通过反射“暴力破解”也能破坏单例模式,具体暂时不阐述。

3:克隆

克隆也会破坏单例模式,具体暂时不阐述。

代码链接:https://gitee.com/ganganbobo/gps-parent

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容