Python经典排序算法

排序:内部和外部

内部排序:数据记录在内存中进行排序。
外部排序:排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

图1.
几种排序算法的比较:
图2.

n:数据规模
k:“桶”的个数
In-place:占用常数内存,不占用额外内存
Out-place:占用额外内存
稳定性:排序后2个相等键值的顺序和排序之前它们的顺序相同


交换排序
1.冒泡排序
  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数
  • 针对所有的元素重复以上的步骤,除了最后一个
  • 重复步骤1~3,直到排序完成。

python实现:

def BubbleSort(lst):
    n=len(lst)
    if n<=1:
        return lst
    for i in range (n):
        for j in range(n-i-1):
            if lst[j] > lst[j+1]:
                lst[j],lst[j+1] = lst[j+1],lst[j]  #Python交换两个数不用中间变量
    return lst

如图3.冒泡排序对n个数据操作n-1轮,每轮找出一个最大(小)值。操作只对相邻两个数比较与交换,每轮会将一个最值交换到数据列首(尾),像冒泡一样。每轮操作O(n)次,共O(n)轮,时间复杂度O(n^2)。空间复杂度O(1)。


图3.冒泡排序
2.快速排序
  • 从数列中选出一个元素,称为 “基准”(pivot)
  • 重新排序数列,比基准值小元素的放在基准前面,比基准大的放在基准的后面(相同的数可以到任一边)。
  • 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。

python实现:

def quickSort(nums):  # 这种写法的平均空间复杂度为 O(nlogn)
    if len(nums) <= 1:
        return nums
    pivot = nums[0]  # 基准值
    left = [nums[i] for i in range(1, len(nums)) if nums[i] < pivot] 
    right = [nums[i] for i in range(1, len(nums)) if nums[i] >= pivot]
    return quickSort(left) + [pivot] + quickSort(right)

'''
@param nums: 待排序数组
@param left: 数组上界
@param right: 数组下界
'''
def quickSort2(nums, left, right):  # 这种写法的平均空间复杂度为 O(logn) 
    # 分区操作
    def partition(nums, left, right):
        pivot = nums[left]  # 基准值
        while left < right:
            while left < right and nums[right] >= pivot:
                right -= 1
            nums[left] = nums[right]  # 比基准小的交换到前面
            while left < right and nums[left] <= pivot:
                left += 1
            nums[right] = nums[left]  # 比基准大交换到后面
        nums[left] = pivot # 基准值的正确位置,也可以为 nums[right] = pivot
        return left  # 返回基准值的索引,也可以为 return right
    # 递归操作
    if left < right:
        pivotIndex = partition(nums, left, right)
        quickSort2(nums, left, pivotIndex - 1)  # 左序列
        quickSort2(nums, pivotIndex + 1, right) # 右序列
    return nums
图4.快速排序
插入排序
1.简单插入排序
2.希尔排序
选择排序
1.简单选择排序
2.堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

  • 大顶堆:每个节点的值都大于或等于其子节点的值,用于升序排列。
  • 小顶堆:每个节点的值都小于或等于其子节点的值,用于降序排列。
  1. 对于升序排列,首先构建大顶堆,此堆为初始的无序序列。
  2. 将堆顶与堆底最后一个元素交换。将无序元素重新构建成大顶堆。
  3. 反复执行至序列有序。

堆排序

Python实现:

# 大顶堆(升序排列)
def heapSort(nums):
    # 调整堆
    def adjustHeap(nums, i, size):
        # 非叶子结点的左右两个孩子
        lchild = 2 * i + 1
        rchild = 2 * i + 2
        # 在当前结点、左孩子、右孩子中找到最大元素的索引
        largest = i 
        if lchild < size and nums[lchild] > nums[largest]: 
            largest = lchild 
        if rchild < size and nums[rchild] > nums[largest]: 
            largest = rchild 
        # 如果最大元素的索引不是当前结点的索引,把大的结点交换到上面,继续调整堆
        if largest != i: 
            nums[largest], nums[i] = nums[i], nums[largest] 
            # 第 2 个参数传入 largest 的索引是交换前大数字对应的索引
            # 交换后该索引对应的是小数字,应该把该小数字向下调整
            adjustHeap(nums, largest, size)
    # 建立堆
    def builtHeap(nums, size):
        for i in range(len(nums)//2)[::-1]: # 从倒数第一个非叶子结点开始建立大顶堆
            adjustHeap(nums, i, size) # 对所有非叶子结点进行堆的调整
        # print(nums)  # 第一次建立好的大顶堆
    # 堆排序 
    size = len(nums)
    builtHeap(nums, size) 
    for i in range(len(nums))[::-1]: 
        # 每次根结点都是最大的数,最大数放到后面
        nums[0], nums[i] = nums[i], nums[0] 
        # 交换完后还需要继续调整堆,只需调整根节点,此时数组的 size 不包括已经排序好的数
        adjustHeap(nums, 0, i) 
    return nums  # 由于每次大的都会放到后面,因此最后的 nums 是从小到大排列
归并排序
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350